Accelerating industrial-level CO electroreduction kinetics on isolated zinc centers sulfur-boosted bicarbonate dissociation
Improving the proton transfer rate in the proton-coupled electron transfer process is the key to accelerating the reaction kinetics of CO 2 electroreduction (CO 2 ER). However, the synchronous enhancement of proton feeding and CO 2 activation are hardly achieved over the single active site, making r...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2023-03, Vol.16 (3), p.17-115 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115 |
---|---|
container_issue | 3 |
container_start_page | 17 |
container_title | Energy & environmental science |
container_volume | 16 |
creator | Zheng, Wanzhen Wang, Dashuai Cui, Wenjun Sang, Xiahan Qin, Xuetao Zhao, Zilin Li, Zhongjian Yang, Bin Zhong, Miao Lei, Lecheng Zheng, Qiang Yao, Siyu Wu, Gang Hou, Yang |
description | Improving the proton transfer rate in the proton-coupled electron transfer process is the key to accelerating the reaction kinetics of CO
2
electroreduction (CO
2
ER). However, the synchronous enhancement of proton feeding and CO
2
activation are hardly achieved over the single active site, making rapid conversion with high product selectivity a considerable challenge. Herein, we develop an isolated zinc site embedded in nitrogen, sulfur co-doped hierarchically porous carbon (denoted as Zn-NS-C) electrocatalyst toward CO
2
ER, in which central Zn-N
4
active sites are associated with adjacent S dopants in Zn-NS-C. Kinetic experiments combined with
in situ
spectroscopy unveil that the auxiliary S sites promote bicarbonate dissociation kinetics for proton feeding and atomically dispersed Zn-N
4
sites are likely active centers for the CO
2
ER. Theoretical calculations reveal the synergistic effects of S and Zn-N
4
sites that improve the proton transfer rate and boost the reaction kinetics of *CO
2
protonation to form *COOH. As a result, this catalyst delivers an excellent CO
2
ER performance with near-unity CO selectivity at an industrial-level current density of 200 mA cm
−2
and a high turnover frequency of 11 419 h
−1
. Furthermore, the high CO productivity on the Zn-NS-C was confirmed by the highly increased partial C
2
H
4
current density in the Zn-NS-C/Cu tandem catalyst.
A hierarchically porous carbon electrocatalyst containing isolated Zn sites and N/S dopants was developed for simultaneously facilitating bicarbonate dissociation and CO
2
protonation, achieving high CO
2
ER kinetics at industrial current density. |
doi_str_mv | 10.1039/d2ee02725a |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d2ee02725a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d2ee02725a</sourcerecordid><originalsourceid>FETCH-rsc_primary_d2ee02725a3</originalsourceid><addsrcrecordid>eNqFj01LA0EQRAdRSPy45C70H1idnWR32aMExZuX3MNsTyd0Ms5I96yg_nk3oHj0VA9eUVDGLGp7V9tlfx8ckXWda_yZmddds6qazrbnv9z2bmYuVQ_Wts52_dx8PSBSJPGF0x44hVGLsI9VpHeKsH6ByWKRLBRGLJwTHDlRYVSYmDVHXyjAJycEpFRIFHSMu1GqIWc9uYHRy5DTVITAqhnZn5auzcXOR6Wbn7wyt0-Pm_VzJYrbN-FXLx_bv0fL__w3NLZShA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accelerating industrial-level CO electroreduction kinetics on isolated zinc centers sulfur-boosted bicarbonate dissociation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zheng, Wanzhen ; Wang, Dashuai ; Cui, Wenjun ; Sang, Xiahan ; Qin, Xuetao ; Zhao, Zilin ; Li, Zhongjian ; Yang, Bin ; Zhong, Miao ; Lei, Lecheng ; Zheng, Qiang ; Yao, Siyu ; Wu, Gang ; Hou, Yang</creator><creatorcontrib>Zheng, Wanzhen ; Wang, Dashuai ; Cui, Wenjun ; Sang, Xiahan ; Qin, Xuetao ; Zhao, Zilin ; Li, Zhongjian ; Yang, Bin ; Zhong, Miao ; Lei, Lecheng ; Zheng, Qiang ; Yao, Siyu ; Wu, Gang ; Hou, Yang</creatorcontrib><description>Improving the proton transfer rate in the proton-coupled electron transfer process is the key to accelerating the reaction kinetics of CO
2
electroreduction (CO
2
ER). However, the synchronous enhancement of proton feeding and CO
2
activation are hardly achieved over the single active site, making rapid conversion with high product selectivity a considerable challenge. Herein, we develop an isolated zinc site embedded in nitrogen, sulfur co-doped hierarchically porous carbon (denoted as Zn-NS-C) electrocatalyst toward CO
2
ER, in which central Zn-N
4
active sites are associated with adjacent S dopants in Zn-NS-C. Kinetic experiments combined with
in situ
spectroscopy unveil that the auxiliary S sites promote bicarbonate dissociation kinetics for proton feeding and atomically dispersed Zn-N
4
sites are likely active centers for the CO
2
ER. Theoretical calculations reveal the synergistic effects of S and Zn-N
4
sites that improve the proton transfer rate and boost the reaction kinetics of *CO
2
protonation to form *COOH. As a result, this catalyst delivers an excellent CO
2
ER performance with near-unity CO selectivity at an industrial-level current density of 200 mA cm
−2
and a high turnover frequency of 11 419 h
−1
. Furthermore, the high CO productivity on the Zn-NS-C was confirmed by the highly increased partial C
2
H
4
current density in the Zn-NS-C/Cu tandem catalyst.
A hierarchically porous carbon electrocatalyst containing isolated Zn sites and N/S dopants was developed for simultaneously facilitating bicarbonate dissociation and CO
2
protonation, achieving high CO
2
ER kinetics at industrial current density.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d2ee02725a</identifier><ispartof>Energy & environmental science, 2023-03, Vol.16 (3), p.17-115</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zheng, Wanzhen</creatorcontrib><creatorcontrib>Wang, Dashuai</creatorcontrib><creatorcontrib>Cui, Wenjun</creatorcontrib><creatorcontrib>Sang, Xiahan</creatorcontrib><creatorcontrib>Qin, Xuetao</creatorcontrib><creatorcontrib>Zhao, Zilin</creatorcontrib><creatorcontrib>Li, Zhongjian</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Zhong, Miao</creatorcontrib><creatorcontrib>Lei, Lecheng</creatorcontrib><creatorcontrib>Zheng, Qiang</creatorcontrib><creatorcontrib>Yao, Siyu</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Hou, Yang</creatorcontrib><title>Accelerating industrial-level CO electroreduction kinetics on isolated zinc centers sulfur-boosted bicarbonate dissociation</title><title>Energy & environmental science</title><description>Improving the proton transfer rate in the proton-coupled electron transfer process is the key to accelerating the reaction kinetics of CO
2
electroreduction (CO
2
ER). However, the synchronous enhancement of proton feeding and CO
2
activation are hardly achieved over the single active site, making rapid conversion with high product selectivity a considerable challenge. Herein, we develop an isolated zinc site embedded in nitrogen, sulfur co-doped hierarchically porous carbon (denoted as Zn-NS-C) electrocatalyst toward CO
2
ER, in which central Zn-N
4
active sites are associated with adjacent S dopants in Zn-NS-C. Kinetic experiments combined with
in situ
spectroscopy unveil that the auxiliary S sites promote bicarbonate dissociation kinetics for proton feeding and atomically dispersed Zn-N
4
sites are likely active centers for the CO
2
ER. Theoretical calculations reveal the synergistic effects of S and Zn-N
4
sites that improve the proton transfer rate and boost the reaction kinetics of *CO
2
protonation to form *COOH. As a result, this catalyst delivers an excellent CO
2
ER performance with near-unity CO selectivity at an industrial-level current density of 200 mA cm
−2
and a high turnover frequency of 11 419 h
−1
. Furthermore, the high CO productivity on the Zn-NS-C was confirmed by the highly increased partial C
2
H
4
current density in the Zn-NS-C/Cu tandem catalyst.
A hierarchically porous carbon electrocatalyst containing isolated Zn sites and N/S dopants was developed for simultaneously facilitating bicarbonate dissociation and CO
2
protonation, achieving high CO
2
ER kinetics at industrial current density.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj01LA0EQRAdRSPy45C70H1idnWR32aMExZuX3MNsTyd0Ms5I96yg_nk3oHj0VA9eUVDGLGp7V9tlfx8ckXWda_yZmddds6qazrbnv9z2bmYuVQ_Wts52_dx8PSBSJPGF0x44hVGLsI9VpHeKsH6ByWKRLBRGLJwTHDlRYVSYmDVHXyjAJycEpFRIFHSMu1GqIWc9uYHRy5DTVITAqhnZn5auzcXOR6Wbn7wyt0-Pm_VzJYrbN-FXLx_bv0fL__w3NLZShA</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Zheng, Wanzhen</creator><creator>Wang, Dashuai</creator><creator>Cui, Wenjun</creator><creator>Sang, Xiahan</creator><creator>Qin, Xuetao</creator><creator>Zhao, Zilin</creator><creator>Li, Zhongjian</creator><creator>Yang, Bin</creator><creator>Zhong, Miao</creator><creator>Lei, Lecheng</creator><creator>Zheng, Qiang</creator><creator>Yao, Siyu</creator><creator>Wu, Gang</creator><creator>Hou, Yang</creator><scope/></search><sort><creationdate>20230315</creationdate><title>Accelerating industrial-level CO electroreduction kinetics on isolated zinc centers sulfur-boosted bicarbonate dissociation</title><author>Zheng, Wanzhen ; Wang, Dashuai ; Cui, Wenjun ; Sang, Xiahan ; Qin, Xuetao ; Zhao, Zilin ; Li, Zhongjian ; Yang, Bin ; Zhong, Miao ; Lei, Lecheng ; Zheng, Qiang ; Yao, Siyu ; Wu, Gang ; Hou, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d2ee02725a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Wanzhen</creatorcontrib><creatorcontrib>Wang, Dashuai</creatorcontrib><creatorcontrib>Cui, Wenjun</creatorcontrib><creatorcontrib>Sang, Xiahan</creatorcontrib><creatorcontrib>Qin, Xuetao</creatorcontrib><creatorcontrib>Zhao, Zilin</creatorcontrib><creatorcontrib>Li, Zhongjian</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Zhong, Miao</creatorcontrib><creatorcontrib>Lei, Lecheng</creatorcontrib><creatorcontrib>Zheng, Qiang</creatorcontrib><creatorcontrib>Yao, Siyu</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Hou, Yang</creatorcontrib><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Wanzhen</au><au>Wang, Dashuai</au><au>Cui, Wenjun</au><au>Sang, Xiahan</au><au>Qin, Xuetao</au><au>Zhao, Zilin</au><au>Li, Zhongjian</au><au>Yang, Bin</au><au>Zhong, Miao</au><au>Lei, Lecheng</au><au>Zheng, Qiang</au><au>Yao, Siyu</au><au>Wu, Gang</au><au>Hou, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating industrial-level CO electroreduction kinetics on isolated zinc centers sulfur-boosted bicarbonate dissociation</atitle><jtitle>Energy & environmental science</jtitle><date>2023-03-15</date><risdate>2023</risdate><volume>16</volume><issue>3</issue><spage>17</spage><epage>115</epage><pages>17-115</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Improving the proton transfer rate in the proton-coupled electron transfer process is the key to accelerating the reaction kinetics of CO
2
electroreduction (CO
2
ER). However, the synchronous enhancement of proton feeding and CO
2
activation are hardly achieved over the single active site, making rapid conversion with high product selectivity a considerable challenge. Herein, we develop an isolated zinc site embedded in nitrogen, sulfur co-doped hierarchically porous carbon (denoted as Zn-NS-C) electrocatalyst toward CO
2
ER, in which central Zn-N
4
active sites are associated with adjacent S dopants in Zn-NS-C. Kinetic experiments combined with
in situ
spectroscopy unveil that the auxiliary S sites promote bicarbonate dissociation kinetics for proton feeding and atomically dispersed Zn-N
4
sites are likely active centers for the CO
2
ER. Theoretical calculations reveal the synergistic effects of S and Zn-N
4
sites that improve the proton transfer rate and boost the reaction kinetics of *CO
2
protonation to form *COOH. As a result, this catalyst delivers an excellent CO
2
ER performance with near-unity CO selectivity at an industrial-level current density of 200 mA cm
−2
and a high turnover frequency of 11 419 h
−1
. Furthermore, the high CO productivity on the Zn-NS-C was confirmed by the highly increased partial C
2
H
4
current density in the Zn-NS-C/Cu tandem catalyst.
A hierarchically porous carbon electrocatalyst containing isolated Zn sites and N/S dopants was developed for simultaneously facilitating bicarbonate dissociation and CO
2
protonation, achieving high CO
2
ER kinetics at industrial current density.</abstract><doi>10.1039/d2ee02725a</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2023-03, Vol.16 (3), p.17-115 |
issn | 1754-5692 1754-5706 |
language | |
recordid | cdi_rsc_primary_d2ee02725a |
source | Royal Society Of Chemistry Journals 2008- |
title | Accelerating industrial-level CO electroreduction kinetics on isolated zinc centers sulfur-boosted bicarbonate dissociation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20industrial-level%20CO%20electroreduction%20kinetics%20on%20isolated%20zinc%20centers%20sulfur-boosted%20bicarbonate%20dissociation&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Zheng,%20Wanzhen&rft.date=2023-03-15&rft.volume=16&rft.issue=3&rft.spage=17&rft.epage=115&rft.pages=17-115&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d2ee02725a&rft_dat=%3Crsc%3Ed2ee02725a%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |