Accelerating industrial-level CO electroreduction kinetics on isolated zinc centers sulfur-boosted bicarbonate dissociation

Improving the proton transfer rate in the proton-coupled electron transfer process is the key to accelerating the reaction kinetics of CO 2 electroreduction (CO 2 ER). However, the synchronous enhancement of proton feeding and CO 2 activation are hardly achieved over the single active site, making r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2023-03, Vol.16 (3), p.17-115
Hauptverfasser: Zheng, Wanzhen, Wang, Dashuai, Cui, Wenjun, Sang, Xiahan, Qin, Xuetao, Zhao, Zilin, Li, Zhongjian, Yang, Bin, Zhong, Miao, Lei, Lecheng, Zheng, Qiang, Yao, Siyu, Wu, Gang, Hou, Yang
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue 3
container_start_page 17
container_title Energy & environmental science
container_volume 16
creator Zheng, Wanzhen
Wang, Dashuai
Cui, Wenjun
Sang, Xiahan
Qin, Xuetao
Zhao, Zilin
Li, Zhongjian
Yang, Bin
Zhong, Miao
Lei, Lecheng
Zheng, Qiang
Yao, Siyu
Wu, Gang
Hou, Yang
description Improving the proton transfer rate in the proton-coupled electron transfer process is the key to accelerating the reaction kinetics of CO 2 electroreduction (CO 2 ER). However, the synchronous enhancement of proton feeding and CO 2 activation are hardly achieved over the single active site, making rapid conversion with high product selectivity a considerable challenge. Herein, we develop an isolated zinc site embedded in nitrogen, sulfur co-doped hierarchically porous carbon (denoted as Zn-NS-C) electrocatalyst toward CO 2 ER, in which central Zn-N 4 active sites are associated with adjacent S dopants in Zn-NS-C. Kinetic experiments combined with in situ spectroscopy unveil that the auxiliary S sites promote bicarbonate dissociation kinetics for proton feeding and atomically dispersed Zn-N 4 sites are likely active centers for the CO 2 ER. Theoretical calculations reveal the synergistic effects of S and Zn-N 4 sites that improve the proton transfer rate and boost the reaction kinetics of *CO 2 protonation to form *COOH. As a result, this catalyst delivers an excellent CO 2 ER performance with near-unity CO selectivity at an industrial-level current density of 200 mA cm −2 and a high turnover frequency of 11 419 h −1 . Furthermore, the high CO productivity on the Zn-NS-C was confirmed by the highly increased partial C 2 H 4 current density in the Zn-NS-C/Cu tandem catalyst. A hierarchically porous carbon electrocatalyst containing isolated Zn sites and N/S dopants was developed for simultaneously facilitating bicarbonate dissociation and CO 2 protonation, achieving high CO 2 ER kinetics at industrial current density.
doi_str_mv 10.1039/d2ee02725a
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d2ee02725a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d2ee02725a</sourcerecordid><originalsourceid>FETCH-rsc_primary_d2ee02725a3</originalsourceid><addsrcrecordid>eNqFj01LA0EQRAdRSPy45C70H1idnWR32aMExZuX3MNsTyd0Ms5I96yg_nk3oHj0VA9eUVDGLGp7V9tlfx8ckXWda_yZmddds6qazrbnv9z2bmYuVQ_Wts52_dx8PSBSJPGF0x44hVGLsI9VpHeKsH6ByWKRLBRGLJwTHDlRYVSYmDVHXyjAJycEpFRIFHSMu1GqIWc9uYHRy5DTVITAqhnZn5auzcXOR6Wbn7wyt0-Pm_VzJYrbN-FXLx_bv0fL__w3NLZShA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accelerating industrial-level CO electroreduction kinetics on isolated zinc centers sulfur-boosted bicarbonate dissociation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zheng, Wanzhen ; Wang, Dashuai ; Cui, Wenjun ; Sang, Xiahan ; Qin, Xuetao ; Zhao, Zilin ; Li, Zhongjian ; Yang, Bin ; Zhong, Miao ; Lei, Lecheng ; Zheng, Qiang ; Yao, Siyu ; Wu, Gang ; Hou, Yang</creator><creatorcontrib>Zheng, Wanzhen ; Wang, Dashuai ; Cui, Wenjun ; Sang, Xiahan ; Qin, Xuetao ; Zhao, Zilin ; Li, Zhongjian ; Yang, Bin ; Zhong, Miao ; Lei, Lecheng ; Zheng, Qiang ; Yao, Siyu ; Wu, Gang ; Hou, Yang</creatorcontrib><description>Improving the proton transfer rate in the proton-coupled electron transfer process is the key to accelerating the reaction kinetics of CO 2 electroreduction (CO 2 ER). However, the synchronous enhancement of proton feeding and CO 2 activation are hardly achieved over the single active site, making rapid conversion with high product selectivity a considerable challenge. Herein, we develop an isolated zinc site embedded in nitrogen, sulfur co-doped hierarchically porous carbon (denoted as Zn-NS-C) electrocatalyst toward CO 2 ER, in which central Zn-N 4 active sites are associated with adjacent S dopants in Zn-NS-C. Kinetic experiments combined with in situ spectroscopy unveil that the auxiliary S sites promote bicarbonate dissociation kinetics for proton feeding and atomically dispersed Zn-N 4 sites are likely active centers for the CO 2 ER. Theoretical calculations reveal the synergistic effects of S and Zn-N 4 sites that improve the proton transfer rate and boost the reaction kinetics of *CO 2 protonation to form *COOH. As a result, this catalyst delivers an excellent CO 2 ER performance with near-unity CO selectivity at an industrial-level current density of 200 mA cm −2 and a high turnover frequency of 11 419 h −1 . Furthermore, the high CO productivity on the Zn-NS-C was confirmed by the highly increased partial C 2 H 4 current density in the Zn-NS-C/Cu tandem catalyst. A hierarchically porous carbon electrocatalyst containing isolated Zn sites and N/S dopants was developed for simultaneously facilitating bicarbonate dissociation and CO 2 protonation, achieving high CO 2 ER kinetics at industrial current density.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d2ee02725a</identifier><ispartof>Energy &amp; environmental science, 2023-03, Vol.16 (3), p.17-115</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zheng, Wanzhen</creatorcontrib><creatorcontrib>Wang, Dashuai</creatorcontrib><creatorcontrib>Cui, Wenjun</creatorcontrib><creatorcontrib>Sang, Xiahan</creatorcontrib><creatorcontrib>Qin, Xuetao</creatorcontrib><creatorcontrib>Zhao, Zilin</creatorcontrib><creatorcontrib>Li, Zhongjian</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Zhong, Miao</creatorcontrib><creatorcontrib>Lei, Lecheng</creatorcontrib><creatorcontrib>Zheng, Qiang</creatorcontrib><creatorcontrib>Yao, Siyu</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Hou, Yang</creatorcontrib><title>Accelerating industrial-level CO electroreduction kinetics on isolated zinc centers sulfur-boosted bicarbonate dissociation</title><title>Energy &amp; environmental science</title><description>Improving the proton transfer rate in the proton-coupled electron transfer process is the key to accelerating the reaction kinetics of CO 2 electroreduction (CO 2 ER). However, the synchronous enhancement of proton feeding and CO 2 activation are hardly achieved over the single active site, making rapid conversion with high product selectivity a considerable challenge. Herein, we develop an isolated zinc site embedded in nitrogen, sulfur co-doped hierarchically porous carbon (denoted as Zn-NS-C) electrocatalyst toward CO 2 ER, in which central Zn-N 4 active sites are associated with adjacent S dopants in Zn-NS-C. Kinetic experiments combined with in situ spectroscopy unveil that the auxiliary S sites promote bicarbonate dissociation kinetics for proton feeding and atomically dispersed Zn-N 4 sites are likely active centers for the CO 2 ER. Theoretical calculations reveal the synergistic effects of S and Zn-N 4 sites that improve the proton transfer rate and boost the reaction kinetics of *CO 2 protonation to form *COOH. As a result, this catalyst delivers an excellent CO 2 ER performance with near-unity CO selectivity at an industrial-level current density of 200 mA cm −2 and a high turnover frequency of 11 419 h −1 . Furthermore, the high CO productivity on the Zn-NS-C was confirmed by the highly increased partial C 2 H 4 current density in the Zn-NS-C/Cu tandem catalyst. A hierarchically porous carbon electrocatalyst containing isolated Zn sites and N/S dopants was developed for simultaneously facilitating bicarbonate dissociation and CO 2 protonation, achieving high CO 2 ER kinetics at industrial current density.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj01LA0EQRAdRSPy45C70H1idnWR32aMExZuX3MNsTyd0Ms5I96yg_nk3oHj0VA9eUVDGLGp7V9tlfx8ckXWda_yZmddds6qazrbnv9z2bmYuVQ_Wts52_dx8PSBSJPGF0x44hVGLsI9VpHeKsH6ByWKRLBRGLJwTHDlRYVSYmDVHXyjAJycEpFRIFHSMu1GqIWc9uYHRy5DTVITAqhnZn5auzcXOR6Wbn7wyt0-Pm_VzJYrbN-FXLx_bv0fL__w3NLZShA</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Zheng, Wanzhen</creator><creator>Wang, Dashuai</creator><creator>Cui, Wenjun</creator><creator>Sang, Xiahan</creator><creator>Qin, Xuetao</creator><creator>Zhao, Zilin</creator><creator>Li, Zhongjian</creator><creator>Yang, Bin</creator><creator>Zhong, Miao</creator><creator>Lei, Lecheng</creator><creator>Zheng, Qiang</creator><creator>Yao, Siyu</creator><creator>Wu, Gang</creator><creator>Hou, Yang</creator><scope/></search><sort><creationdate>20230315</creationdate><title>Accelerating industrial-level CO electroreduction kinetics on isolated zinc centers sulfur-boosted bicarbonate dissociation</title><author>Zheng, Wanzhen ; Wang, Dashuai ; Cui, Wenjun ; Sang, Xiahan ; Qin, Xuetao ; Zhao, Zilin ; Li, Zhongjian ; Yang, Bin ; Zhong, Miao ; Lei, Lecheng ; Zheng, Qiang ; Yao, Siyu ; Wu, Gang ; Hou, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d2ee02725a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Wanzhen</creatorcontrib><creatorcontrib>Wang, Dashuai</creatorcontrib><creatorcontrib>Cui, Wenjun</creatorcontrib><creatorcontrib>Sang, Xiahan</creatorcontrib><creatorcontrib>Qin, Xuetao</creatorcontrib><creatorcontrib>Zhao, Zilin</creatorcontrib><creatorcontrib>Li, Zhongjian</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Zhong, Miao</creatorcontrib><creatorcontrib>Lei, Lecheng</creatorcontrib><creatorcontrib>Zheng, Qiang</creatorcontrib><creatorcontrib>Yao, Siyu</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Hou, Yang</creatorcontrib><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Wanzhen</au><au>Wang, Dashuai</au><au>Cui, Wenjun</au><au>Sang, Xiahan</au><au>Qin, Xuetao</au><au>Zhao, Zilin</au><au>Li, Zhongjian</au><au>Yang, Bin</au><au>Zhong, Miao</au><au>Lei, Lecheng</au><au>Zheng, Qiang</au><au>Yao, Siyu</au><au>Wu, Gang</au><au>Hou, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating industrial-level CO electroreduction kinetics on isolated zinc centers sulfur-boosted bicarbonate dissociation</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2023-03-15</date><risdate>2023</risdate><volume>16</volume><issue>3</issue><spage>17</spage><epage>115</epage><pages>17-115</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Improving the proton transfer rate in the proton-coupled electron transfer process is the key to accelerating the reaction kinetics of CO 2 electroreduction (CO 2 ER). However, the synchronous enhancement of proton feeding and CO 2 activation are hardly achieved over the single active site, making rapid conversion with high product selectivity a considerable challenge. Herein, we develop an isolated zinc site embedded in nitrogen, sulfur co-doped hierarchically porous carbon (denoted as Zn-NS-C) electrocatalyst toward CO 2 ER, in which central Zn-N 4 active sites are associated with adjacent S dopants in Zn-NS-C. Kinetic experiments combined with in situ spectroscopy unveil that the auxiliary S sites promote bicarbonate dissociation kinetics for proton feeding and atomically dispersed Zn-N 4 sites are likely active centers for the CO 2 ER. Theoretical calculations reveal the synergistic effects of S and Zn-N 4 sites that improve the proton transfer rate and boost the reaction kinetics of *CO 2 protonation to form *COOH. As a result, this catalyst delivers an excellent CO 2 ER performance with near-unity CO selectivity at an industrial-level current density of 200 mA cm −2 and a high turnover frequency of 11 419 h −1 . Furthermore, the high CO productivity on the Zn-NS-C was confirmed by the highly increased partial C 2 H 4 current density in the Zn-NS-C/Cu tandem catalyst. A hierarchically porous carbon electrocatalyst containing isolated Zn sites and N/S dopants was developed for simultaneously facilitating bicarbonate dissociation and CO 2 protonation, achieving high CO 2 ER kinetics at industrial current density.</abstract><doi>10.1039/d2ee02725a</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2023-03, Vol.16 (3), p.17-115
issn 1754-5692
1754-5706
language
recordid cdi_rsc_primary_d2ee02725a
source Royal Society Of Chemistry Journals 2008-
title Accelerating industrial-level CO electroreduction kinetics on isolated zinc centers sulfur-boosted bicarbonate dissociation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20industrial-level%20CO%20electroreduction%20kinetics%20on%20isolated%20zinc%20centers%20sulfur-boosted%20bicarbonate%20dissociation&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Zheng,%20Wanzhen&rft.date=2023-03-15&rft.volume=16&rft.issue=3&rft.spage=17&rft.epage=115&rft.pages=17-115&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d2ee02725a&rft_dat=%3Crsc%3Ed2ee02725a%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true