Synthesis of GeSn nanoparticles under non-inert conditions

Ge 1− x Sn x nanoparticles are interesting for a variety of different optoelectronic devices, however, the synthesis normally involves highly inert conditions, making it less available and promising for future industry implementation. Here, a new non-inert synthesis route is presented which involves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2022-11, Vol.51 (45), p.17488-17495
Hauptverfasser: Søgaard, Nicolaj Brink, Bondesgaard, Martin, Bertelsen, Andreas Dueholm, Iversen, Bo Brummerstedt, Julsgaard, Brian
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17495
container_issue 45
container_start_page 17488
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 51
creator Søgaard, Nicolaj Brink
Bondesgaard, Martin
Bertelsen, Andreas Dueholm
Iversen, Bo Brummerstedt
Julsgaard, Brian
description Ge 1− x Sn x nanoparticles are interesting for a variety of different optoelectronic devices, however, the synthesis normally involves highly inert conditions, making it less available and promising for future industry implementation. Here, a new non-inert synthesis route is presented which involves preparation of the synthesis under ambient conditions followed by a reaction in autoclaves at temperatures between 400 °C and 500 °C and pressures between 52 bar and 290 bar. The product formation is also investigated with in situ powder X-ray diffraction (PXRD) to study the effect of the reaction parameters in more detail, e.g. showing that the Sn-precursor catalyzes the reaction. The synthesized phase pure Ge 1− x Sn x nanoparticles have Sn concentrations ranging from 0 to ∼4% and crystallite sizes ranging from approximately 11 nm to 25 nm. If the Sn-precursor concentration is increased further, β-Sn is formed as an impurity phase accompanied by an increase in the size of the Ge 1− x Sn x particles, making sizes of up to about 55 nm available. Ge 1− x Sn x nanoparticles are interesting for many different optoelectronic devices, however, the synthesis normally involves highly inert conditions, making it less promising for industry implementation. Here, a new non-inert synthesis is presented.
doi_str_mv 10.1039/d2dt02739a
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d2dt02739a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d2dt02739a</sourcerecordid><originalsourceid>FETCH-rsc_primary_d2dt02739a3</originalsourceid><addsrcrecordid>eNqFjrsKwjAUQC-iYH0s7kJ-oJreVEtdxcde9xKaFCP1puTGoX_vIjo6nQNnOQCrTG4yqcqtQRMlFqrUI0iyvCjSElU-_jrupzBjfkiJKHeYwKEaKN4tOxa-FRdbkSBNvtchuqazLF5kbBDkKXVkQxSNJ-Oi88QLmLS6Y7v8cA7r8-l2vKaBm7oP7qnDUP-G1L_-BnP1OTk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis of GeSn nanoparticles under non-inert conditions</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Søgaard, Nicolaj Brink ; Bondesgaard, Martin ; Bertelsen, Andreas Dueholm ; Iversen, Bo Brummerstedt ; Julsgaard, Brian</creator><creatorcontrib>Søgaard, Nicolaj Brink ; Bondesgaard, Martin ; Bertelsen, Andreas Dueholm ; Iversen, Bo Brummerstedt ; Julsgaard, Brian</creatorcontrib><description>Ge 1− x Sn x nanoparticles are interesting for a variety of different optoelectronic devices, however, the synthesis normally involves highly inert conditions, making it less available and promising for future industry implementation. Here, a new non-inert synthesis route is presented which involves preparation of the synthesis under ambient conditions followed by a reaction in autoclaves at temperatures between 400 °C and 500 °C and pressures between 52 bar and 290 bar. The product formation is also investigated with in situ powder X-ray diffraction (PXRD) to study the effect of the reaction parameters in more detail, e.g. showing that the Sn-precursor catalyzes the reaction. The synthesized phase pure Ge 1− x Sn x nanoparticles have Sn concentrations ranging from 0 to ∼4% and crystallite sizes ranging from approximately 11 nm to 25 nm. If the Sn-precursor concentration is increased further, β-Sn is formed as an impurity phase accompanied by an increase in the size of the Ge 1− x Sn x particles, making sizes of up to about 55 nm available. Ge 1− x Sn x nanoparticles are interesting for many different optoelectronic devices, however, the synthesis normally involves highly inert conditions, making it less promising for industry implementation. Here, a new non-inert synthesis is presented.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d2dt02739a</identifier><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2022-11, Vol.51 (45), p.17488-17495</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Søgaard, Nicolaj Brink</creatorcontrib><creatorcontrib>Bondesgaard, Martin</creatorcontrib><creatorcontrib>Bertelsen, Andreas Dueholm</creatorcontrib><creatorcontrib>Iversen, Bo Brummerstedt</creatorcontrib><creatorcontrib>Julsgaard, Brian</creatorcontrib><title>Synthesis of GeSn nanoparticles under non-inert conditions</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>Ge 1− x Sn x nanoparticles are interesting for a variety of different optoelectronic devices, however, the synthesis normally involves highly inert conditions, making it less available and promising for future industry implementation. Here, a new non-inert synthesis route is presented which involves preparation of the synthesis under ambient conditions followed by a reaction in autoclaves at temperatures between 400 °C and 500 °C and pressures between 52 bar and 290 bar. The product formation is also investigated with in situ powder X-ray diffraction (PXRD) to study the effect of the reaction parameters in more detail, e.g. showing that the Sn-precursor catalyzes the reaction. The synthesized phase pure Ge 1− x Sn x nanoparticles have Sn concentrations ranging from 0 to ∼4% and crystallite sizes ranging from approximately 11 nm to 25 nm. If the Sn-precursor concentration is increased further, β-Sn is formed as an impurity phase accompanied by an increase in the size of the Ge 1− x Sn x particles, making sizes of up to about 55 nm available. Ge 1− x Sn x nanoparticles are interesting for many different optoelectronic devices, however, the synthesis normally involves highly inert conditions, making it less promising for industry implementation. Here, a new non-inert synthesis is presented.</description><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjrsKwjAUQC-iYH0s7kJ-oJreVEtdxcde9xKaFCP1puTGoX_vIjo6nQNnOQCrTG4yqcqtQRMlFqrUI0iyvCjSElU-_jrupzBjfkiJKHeYwKEaKN4tOxa-FRdbkSBNvtchuqazLF5kbBDkKXVkQxSNJ-Oi88QLmLS6Y7v8cA7r8-l2vKaBm7oP7qnDUP-G1L_-BnP1OTk</recordid><startdate>20221121</startdate><enddate>20221121</enddate><creator>Søgaard, Nicolaj Brink</creator><creator>Bondesgaard, Martin</creator><creator>Bertelsen, Andreas Dueholm</creator><creator>Iversen, Bo Brummerstedt</creator><creator>Julsgaard, Brian</creator><scope/></search><sort><creationdate>20221121</creationdate><title>Synthesis of GeSn nanoparticles under non-inert conditions</title><author>Søgaard, Nicolaj Brink ; Bondesgaard, Martin ; Bertelsen, Andreas Dueholm ; Iversen, Bo Brummerstedt ; Julsgaard, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d2dt02739a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Søgaard, Nicolaj Brink</creatorcontrib><creatorcontrib>Bondesgaard, Martin</creatorcontrib><creatorcontrib>Bertelsen, Andreas Dueholm</creatorcontrib><creatorcontrib>Iversen, Bo Brummerstedt</creatorcontrib><creatorcontrib>Julsgaard, Brian</creatorcontrib><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Søgaard, Nicolaj Brink</au><au>Bondesgaard, Martin</au><au>Bertelsen, Andreas Dueholm</au><au>Iversen, Bo Brummerstedt</au><au>Julsgaard, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of GeSn nanoparticles under non-inert conditions</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2022-11-21</date><risdate>2022</risdate><volume>51</volume><issue>45</issue><spage>17488</spage><epage>17495</epage><pages>17488-17495</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Ge 1− x Sn x nanoparticles are interesting for a variety of different optoelectronic devices, however, the synthesis normally involves highly inert conditions, making it less available and promising for future industry implementation. Here, a new non-inert synthesis route is presented which involves preparation of the synthesis under ambient conditions followed by a reaction in autoclaves at temperatures between 400 °C and 500 °C and pressures between 52 bar and 290 bar. The product formation is also investigated with in situ powder X-ray diffraction (PXRD) to study the effect of the reaction parameters in more detail, e.g. showing that the Sn-precursor catalyzes the reaction. The synthesized phase pure Ge 1− x Sn x nanoparticles have Sn concentrations ranging from 0 to ∼4% and crystallite sizes ranging from approximately 11 nm to 25 nm. If the Sn-precursor concentration is increased further, β-Sn is formed as an impurity phase accompanied by an increase in the size of the Ge 1− x Sn x particles, making sizes of up to about 55 nm available. Ge 1− x Sn x nanoparticles are interesting for many different optoelectronic devices, however, the synthesis normally involves highly inert conditions, making it less promising for industry implementation. Here, a new non-inert synthesis is presented.</abstract><doi>10.1039/d2dt02739a</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2022-11, Vol.51 (45), p.17488-17495
issn 1477-9226
1477-9234
language
recordid cdi_rsc_primary_d2dt02739a
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
title Synthesis of GeSn nanoparticles under non-inert conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T13%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20GeSn%20nanoparticles%20under%20non-inert%20conditions&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=S%C3%B8gaard,%20Nicolaj%20Brink&rft.date=2022-11-21&rft.volume=51&rft.issue=45&rft.spage=17488&rft.epage=17495&rft.pages=17488-17495&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d2dt02739a&rft_dat=%3Crsc%3Ed2dt02739a%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true