Unified graph neural network force-field for the periodic table: solid state applications

Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids. MLFFs have hitherto largely been designed and fitted for specific systems and are not usually transferable to chemistries beyond the specific training set. We develop a uni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital discovery 2023-04, Vol.2 (2), p.346-355
Hauptverfasser: Choudhary, Kamal, DeCost, Brian, Major, Lily, Butler, Keith, Thiyagalingam, Jeyan, Tavazza, Francesca
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355
container_issue 2
container_start_page 346
container_title Digital discovery
container_volume 2
creator Choudhary, Kamal
DeCost, Brian
Major, Lily
Butler, Keith
Thiyagalingam, Jeyan
Tavazza, Francesca
description Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids. MLFFs have hitherto largely been designed and fitted for specific systems and are not usually transferable to chemistries beyond the specific training set. We develop a unified atomisitic line graph neural network-based FF (ALIGNN-FF) that can model both structurally and chemically diverse solids with any combination of 89 elements from the periodic table. To train the ALIGNN-FF model, we use the JARVIS-DFT dataset which contains around 75 000 materials and 4 million energy-force entries, out of which 307 113 are used in the training. We demonstrate the applicability of this method for fast optimization of atomic structures in the crystallography open database and by predicting accurate crystal structures using a genetic algorithm for alloys. Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids.
doi_str_mv 10.1039/d2dd00096b
format Article
fullrecord <record><control><sourceid>rsc_cross</sourceid><recordid>TN_cdi_rsc_primary_d2dd00096b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d2dd00096b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-16577d41edf5b1b4e0840daa5c0ae75eacaaf8af714f64b2860778628cbe0ea53</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWGo37oWshdGXyUwydadt_YCCGwu6Gt4kLzY6doYkIv57p1bU1b1wD3dxGDsWcCZATs9tbi0ATFWzx0a5kmUG0-px_18_ZJMYXwYm11oIqUbsabXxzpPlzwH7Nd_Qe8B2iPTRhVfuumAoG_bWbjtPa-I9Bd9Zb3jCpqULHrvWWx4TJuLY9603mHy3iUfswGEbafKTY7a6XjzMbrPl_c3d7HKZGSkhZUKVWttCkHVlI5qCoCrAIpYGkHRJaBBdhU6LwqmiySsFWlcqr0xDQFjKMTvd_ZrQxRjI1X3wbxg-awH11ks9z-fzby9XA3yyg0M0v9yfN_kFc9xg8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unified graph neural network force-field for the periodic table: solid state applications</title><source>DOAJ Directory of Open Access Journals</source><creator>Choudhary, Kamal ; DeCost, Brian ; Major, Lily ; Butler, Keith ; Thiyagalingam, Jeyan ; Tavazza, Francesca</creator><creatorcontrib>Choudhary, Kamal ; DeCost, Brian ; Major, Lily ; Butler, Keith ; Thiyagalingam, Jeyan ; Tavazza, Francesca</creatorcontrib><description>Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids. MLFFs have hitherto largely been designed and fitted for specific systems and are not usually transferable to chemistries beyond the specific training set. We develop a unified atomisitic line graph neural network-based FF (ALIGNN-FF) that can model both structurally and chemically diverse solids with any combination of 89 elements from the periodic table. To train the ALIGNN-FF model, we use the JARVIS-DFT dataset which contains around 75 000 materials and 4 million energy-force entries, out of which 307 113 are used in the training. We demonstrate the applicability of this method for fast optimization of atomic structures in the crystallography open database and by predicting accurate crystal structures using a genetic algorithm for alloys. Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids.</description><identifier>ISSN: 2635-098X</identifier><identifier>EISSN: 2635-098X</identifier><identifier>DOI: 10.1039/d2dd00096b</identifier><language>eng</language><ispartof>Digital discovery, 2023-04, Vol.2 (2), p.346-355</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-16577d41edf5b1b4e0840daa5c0ae75eacaaf8af714f64b2860778628cbe0ea53</citedby><cites>FETCH-LOGICAL-c330t-16577d41edf5b1b4e0840daa5c0ae75eacaaf8af714f64b2860778628cbe0ea53</cites><orcidid>0000-0001-9737-8074 ; 0000-0001-5432-5597 ; 0000-0002-3459-5888 ; 0000-0002-5602-180X ; 0000-0002-2167-1343 ; 0000-0002-5783-8432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Choudhary, Kamal</creatorcontrib><creatorcontrib>DeCost, Brian</creatorcontrib><creatorcontrib>Major, Lily</creatorcontrib><creatorcontrib>Butler, Keith</creatorcontrib><creatorcontrib>Thiyagalingam, Jeyan</creatorcontrib><creatorcontrib>Tavazza, Francesca</creatorcontrib><title>Unified graph neural network force-field for the periodic table: solid state applications</title><title>Digital discovery</title><description>Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids. MLFFs have hitherto largely been designed and fitted for specific systems and are not usually transferable to chemistries beyond the specific training set. We develop a unified atomisitic line graph neural network-based FF (ALIGNN-FF) that can model both structurally and chemically diverse solids with any combination of 89 elements from the periodic table. To train the ALIGNN-FF model, we use the JARVIS-DFT dataset which contains around 75 000 materials and 4 million energy-force entries, out of which 307 113 are used in the training. We demonstrate the applicability of this method for fast optimization of atomic structures in the crystallography open database and by predicting accurate crystal structures using a genetic algorithm for alloys. Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids.</description><issn>2635-098X</issn><issn>2635-098X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEURYMoWGo37oWshdGXyUwydadt_YCCGwu6Gt4kLzY6doYkIv57p1bU1b1wD3dxGDsWcCZATs9tbi0ATFWzx0a5kmUG0-px_18_ZJMYXwYm11oIqUbsabXxzpPlzwH7Nd_Qe8B2iPTRhVfuumAoG_bWbjtPa-I9Bd9Zb3jCpqULHrvWWx4TJuLY9603mHy3iUfswGEbafKTY7a6XjzMbrPl_c3d7HKZGSkhZUKVWttCkHVlI5qCoCrAIpYGkHRJaBBdhU6LwqmiySsFWlcqr0xDQFjKMTvd_ZrQxRjI1X3wbxg-awH11ks9z-fzby9XA3yyg0M0v9yfN_kFc9xg8w</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Choudhary, Kamal</creator><creator>DeCost, Brian</creator><creator>Major, Lily</creator><creator>Butler, Keith</creator><creator>Thiyagalingam, Jeyan</creator><creator>Tavazza, Francesca</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9737-8074</orcidid><orcidid>https://orcid.org/0000-0001-5432-5597</orcidid><orcidid>https://orcid.org/0000-0002-3459-5888</orcidid><orcidid>https://orcid.org/0000-0002-5602-180X</orcidid><orcidid>https://orcid.org/0000-0002-2167-1343</orcidid><orcidid>https://orcid.org/0000-0002-5783-8432</orcidid></search><sort><creationdate>20230411</creationdate><title>Unified graph neural network force-field for the periodic table: solid state applications</title><author>Choudhary, Kamal ; DeCost, Brian ; Major, Lily ; Butler, Keith ; Thiyagalingam, Jeyan ; Tavazza, Francesca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-16577d41edf5b1b4e0840daa5c0ae75eacaaf8af714f64b2860778628cbe0ea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhary, Kamal</creatorcontrib><creatorcontrib>DeCost, Brian</creatorcontrib><creatorcontrib>Major, Lily</creatorcontrib><creatorcontrib>Butler, Keith</creatorcontrib><creatorcontrib>Thiyagalingam, Jeyan</creatorcontrib><creatorcontrib>Tavazza, Francesca</creatorcontrib><collection>CrossRef</collection><jtitle>Digital discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhary, Kamal</au><au>DeCost, Brian</au><au>Major, Lily</au><au>Butler, Keith</au><au>Thiyagalingam, Jeyan</au><au>Tavazza, Francesca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unified graph neural network force-field for the periodic table: solid state applications</atitle><jtitle>Digital discovery</jtitle><date>2023-04-11</date><risdate>2023</risdate><volume>2</volume><issue>2</issue><spage>346</spage><epage>355</epage><pages>346-355</pages><issn>2635-098X</issn><eissn>2635-098X</eissn><abstract>Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids. MLFFs have hitherto largely been designed and fitted for specific systems and are not usually transferable to chemistries beyond the specific training set. We develop a unified atomisitic line graph neural network-based FF (ALIGNN-FF) that can model both structurally and chemically diverse solids with any combination of 89 elements from the periodic table. To train the ALIGNN-FF model, we use the JARVIS-DFT dataset which contains around 75 000 materials and 4 million energy-force entries, out of which 307 113 are used in the training. We demonstrate the applicability of this method for fast optimization of atomic structures in the crystallography open database and by predicting accurate crystal structures using a genetic algorithm for alloys. Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids.</abstract><doi>10.1039/d2dd00096b</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9737-8074</orcidid><orcidid>https://orcid.org/0000-0001-5432-5597</orcidid><orcidid>https://orcid.org/0000-0002-3459-5888</orcidid><orcidid>https://orcid.org/0000-0002-5602-180X</orcidid><orcidid>https://orcid.org/0000-0002-2167-1343</orcidid><orcidid>https://orcid.org/0000-0002-5783-8432</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2635-098X
ispartof Digital discovery, 2023-04, Vol.2 (2), p.346-355
issn 2635-098X
2635-098X
language eng
recordid cdi_rsc_primary_d2dd00096b
source DOAJ Directory of Open Access Journals
title Unified graph neural network force-field for the periodic table: solid state applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unified%20graph%20neural%20network%20force-field%20for%20the%20periodic%20table:%20solid%20state%20applications&rft.jtitle=Digital%20discovery&rft.au=Choudhary,%20Kamal&rft.date=2023-04-11&rft.volume=2&rft.issue=2&rft.spage=346&rft.epage=355&rft.pages=346-355&rft.issn=2635-098X&rft.eissn=2635-098X&rft_id=info:doi/10.1039/d2dd00096b&rft_dat=%3Crsc_cross%3Ed2dd00096b%3C/rsc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true