Unified graph neural network force-field for the periodic table: solid state applications
Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids. MLFFs have hitherto largely been designed and fitted for specific systems and are not usually transferable to chemistries beyond the specific training set. We develop a uni...
Gespeichert in:
Veröffentlicht in: | Digital discovery 2023-04, Vol.2 (2), p.346-355 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 2 |
container_start_page | 346 |
container_title | Digital discovery |
container_volume | 2 |
creator | Choudhary, Kamal DeCost, Brian Major, Lily Butler, Keith Thiyagalingam, Jeyan Tavazza, Francesca |
description | Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids. MLFFs have hitherto largely been designed and fitted for specific systems and are not usually transferable to chemistries beyond the specific training set. We develop a unified atomisitic line graph neural network-based FF (ALIGNN-FF) that can model both structurally and chemically diverse solids with any combination of 89 elements from the periodic table. To train the ALIGNN-FF model, we use the JARVIS-DFT dataset which contains around 75 000 materials and 4 million energy-force entries, out of which 307 113 are used in the training. We demonstrate the applicability of this method for fast optimization of atomic structures in the crystallography open database and by predicting accurate crystal structures using a genetic algorithm for alloys.
Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids. |
doi_str_mv | 10.1039/d2dd00096b |
format | Article |
fullrecord | <record><control><sourceid>rsc_cross</sourceid><recordid>TN_cdi_rsc_primary_d2dd00096b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d2dd00096b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-16577d41edf5b1b4e0840daa5c0ae75eacaaf8af714f64b2860778628cbe0ea53</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWGo37oWshdGXyUwydadt_YCCGwu6Gt4kLzY6doYkIv57p1bU1b1wD3dxGDsWcCZATs9tbi0ATFWzx0a5kmUG0-px_18_ZJMYXwYm11oIqUbsabXxzpPlzwH7Nd_Qe8B2iPTRhVfuumAoG_bWbjtPa-I9Bd9Zb3jCpqULHrvWWx4TJuLY9603mHy3iUfswGEbafKTY7a6XjzMbrPl_c3d7HKZGSkhZUKVWttCkHVlI5qCoCrAIpYGkHRJaBBdhU6LwqmiySsFWlcqr0xDQFjKMTvd_ZrQxRjI1X3wbxg-awH11ks9z-fzby9XA3yyg0M0v9yfN_kFc9xg8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unified graph neural network force-field for the periodic table: solid state applications</title><source>DOAJ Directory of Open Access Journals</source><creator>Choudhary, Kamal ; DeCost, Brian ; Major, Lily ; Butler, Keith ; Thiyagalingam, Jeyan ; Tavazza, Francesca</creator><creatorcontrib>Choudhary, Kamal ; DeCost, Brian ; Major, Lily ; Butler, Keith ; Thiyagalingam, Jeyan ; Tavazza, Francesca</creatorcontrib><description>Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids. MLFFs have hitherto largely been designed and fitted for specific systems and are not usually transferable to chemistries beyond the specific training set. We develop a unified atomisitic line graph neural network-based FF (ALIGNN-FF) that can model both structurally and chemically diverse solids with any combination of 89 elements from the periodic table. To train the ALIGNN-FF model, we use the JARVIS-DFT dataset which contains around 75 000 materials and 4 million energy-force entries, out of which 307 113 are used in the training. We demonstrate the applicability of this method for fast optimization of atomic structures in the crystallography open database and by predicting accurate crystal structures using a genetic algorithm for alloys.
Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids.</description><identifier>ISSN: 2635-098X</identifier><identifier>EISSN: 2635-098X</identifier><identifier>DOI: 10.1039/d2dd00096b</identifier><language>eng</language><ispartof>Digital discovery, 2023-04, Vol.2 (2), p.346-355</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-16577d41edf5b1b4e0840daa5c0ae75eacaaf8af714f64b2860778628cbe0ea53</citedby><cites>FETCH-LOGICAL-c330t-16577d41edf5b1b4e0840daa5c0ae75eacaaf8af714f64b2860778628cbe0ea53</cites><orcidid>0000-0001-9737-8074 ; 0000-0001-5432-5597 ; 0000-0002-3459-5888 ; 0000-0002-5602-180X ; 0000-0002-2167-1343 ; 0000-0002-5783-8432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Choudhary, Kamal</creatorcontrib><creatorcontrib>DeCost, Brian</creatorcontrib><creatorcontrib>Major, Lily</creatorcontrib><creatorcontrib>Butler, Keith</creatorcontrib><creatorcontrib>Thiyagalingam, Jeyan</creatorcontrib><creatorcontrib>Tavazza, Francesca</creatorcontrib><title>Unified graph neural network force-field for the periodic table: solid state applications</title><title>Digital discovery</title><description>Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids. MLFFs have hitherto largely been designed and fitted for specific systems and are not usually transferable to chemistries beyond the specific training set. We develop a unified atomisitic line graph neural network-based FF (ALIGNN-FF) that can model both structurally and chemically diverse solids with any combination of 89 elements from the periodic table. To train the ALIGNN-FF model, we use the JARVIS-DFT dataset which contains around 75 000 materials and 4 million energy-force entries, out of which 307 113 are used in the training. We demonstrate the applicability of this method for fast optimization of atomic structures in the crystallography open database and by predicting accurate crystal structures using a genetic algorithm for alloys.
Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids.</description><issn>2635-098X</issn><issn>2635-098X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEURYMoWGo37oWshdGXyUwydadt_YCCGwu6Gt4kLzY6doYkIv57p1bU1b1wD3dxGDsWcCZATs9tbi0ATFWzx0a5kmUG0-px_18_ZJMYXwYm11oIqUbsabXxzpPlzwH7Nd_Qe8B2iPTRhVfuumAoG_bWbjtPa-I9Bd9Zb3jCpqULHrvWWx4TJuLY9603mHy3iUfswGEbafKTY7a6XjzMbrPl_c3d7HKZGSkhZUKVWttCkHVlI5qCoCrAIpYGkHRJaBBdhU6LwqmiySsFWlcqr0xDQFjKMTvd_ZrQxRjI1X3wbxg-awH11ks9z-fzby9XA3yyg0M0v9yfN_kFc9xg8w</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Choudhary, Kamal</creator><creator>DeCost, Brian</creator><creator>Major, Lily</creator><creator>Butler, Keith</creator><creator>Thiyagalingam, Jeyan</creator><creator>Tavazza, Francesca</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9737-8074</orcidid><orcidid>https://orcid.org/0000-0001-5432-5597</orcidid><orcidid>https://orcid.org/0000-0002-3459-5888</orcidid><orcidid>https://orcid.org/0000-0002-5602-180X</orcidid><orcidid>https://orcid.org/0000-0002-2167-1343</orcidid><orcidid>https://orcid.org/0000-0002-5783-8432</orcidid></search><sort><creationdate>20230411</creationdate><title>Unified graph neural network force-field for the periodic table: solid state applications</title><author>Choudhary, Kamal ; DeCost, Brian ; Major, Lily ; Butler, Keith ; Thiyagalingam, Jeyan ; Tavazza, Francesca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-16577d41edf5b1b4e0840daa5c0ae75eacaaf8af714f64b2860778628cbe0ea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhary, Kamal</creatorcontrib><creatorcontrib>DeCost, Brian</creatorcontrib><creatorcontrib>Major, Lily</creatorcontrib><creatorcontrib>Butler, Keith</creatorcontrib><creatorcontrib>Thiyagalingam, Jeyan</creatorcontrib><creatorcontrib>Tavazza, Francesca</creatorcontrib><collection>CrossRef</collection><jtitle>Digital discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhary, Kamal</au><au>DeCost, Brian</au><au>Major, Lily</au><au>Butler, Keith</au><au>Thiyagalingam, Jeyan</au><au>Tavazza, Francesca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unified graph neural network force-field for the periodic table: solid state applications</atitle><jtitle>Digital discovery</jtitle><date>2023-04-11</date><risdate>2023</risdate><volume>2</volume><issue>2</issue><spage>346</spage><epage>355</epage><pages>346-355</pages><issn>2635-098X</issn><eissn>2635-098X</eissn><abstract>Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids. MLFFs have hitherto largely been designed and fitted for specific systems and are not usually transferable to chemistries beyond the specific training set. We develop a unified atomisitic line graph neural network-based FF (ALIGNN-FF) that can model both structurally and chemically diverse solids with any combination of 89 elements from the periodic table. To train the ALIGNN-FF model, we use the JARVIS-DFT dataset which contains around 75 000 materials and 4 million energy-force entries, out of which 307 113 are used in the training. We demonstrate the applicability of this method for fast optimization of atomic structures in the crystallography open database and by predicting accurate crystal structures using a genetic algorithm for alloys.
Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale simulations of solids.</abstract><doi>10.1039/d2dd00096b</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9737-8074</orcidid><orcidid>https://orcid.org/0000-0001-5432-5597</orcidid><orcidid>https://orcid.org/0000-0002-3459-5888</orcidid><orcidid>https://orcid.org/0000-0002-5602-180X</orcidid><orcidid>https://orcid.org/0000-0002-2167-1343</orcidid><orcidid>https://orcid.org/0000-0002-5783-8432</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2635-098X |
ispartof | Digital discovery, 2023-04, Vol.2 (2), p.346-355 |
issn | 2635-098X 2635-098X |
language | eng |
recordid | cdi_rsc_primary_d2dd00096b |
source | DOAJ Directory of Open Access Journals |
title | Unified graph neural network force-field for the periodic table: solid state applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unified%20graph%20neural%20network%20force-field%20for%20the%20periodic%20table:%20solid%20state%20applications&rft.jtitle=Digital%20discovery&rft.au=Choudhary,%20Kamal&rft.date=2023-04-11&rft.volume=2&rft.issue=2&rft.spage=346&rft.epage=355&rft.pages=346-355&rft.issn=2635-098X&rft.eissn=2635-098X&rft_id=info:doi/10.1039/d2dd00096b&rft_dat=%3Crsc_cross%3Ed2dd00096b%3C/rsc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |