Pressurized formic acid dehydrogenation: an entropic spring replaces hydrogen compression cost

Formic acid is unique among liquid organic hydrogen carriers (LOHCs), because its dehydrogenation is highly entropically driven. This enables the evolution of high-pressure hydrogen at mild temperatures that is difficult to achieve with other LOHCs, conceptually by releasing the "spring" o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2022-11, Vol.12 (23), p.7182-7189
Hauptverfasser: Do, Van K, Alfonso Vargas, Nicolas, Chavez, Anthony J, Zhang, Long, Cherepakhin, Valeriy, Lu, Zhiyao, Currier, Robert P, Dub, Pavel A, Gordon, John C, Williams, Travis J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7189
container_issue 23
container_start_page 7182
container_title Catalysis science & technology
container_volume 12
creator Do, Van K
Alfonso Vargas, Nicolas
Chavez, Anthony J
Zhang, Long
Cherepakhin, Valeriy
Lu, Zhiyao
Currier, Robert P
Dub, Pavel A
Gordon, John C
Williams, Travis J
description Formic acid is unique among liquid organic hydrogen carriers (LOHCs), because its dehydrogenation is highly entropically driven. This enables the evolution of high-pressure hydrogen at mild temperatures that is difficult to achieve with other LOHCs, conceptually by releasing the "spring" of energy stored entropically in the liquid carrier. Applications calling for hydrogen-on-demand, such as vehicle filling, require pressurized H 2 . Hydrogen compression dominates the cost for such applications, yet there are very few reports of selective, catalytic dehydrogenation of formic acid at elevated pressure. Herein, we show that homogenous catalysts with various ligand frameworks, including Noyori-type tridentate (PNP, SNS, SNP, SNPO), bidentate chelates (pyridyl)NHC, (pyridyl)phosphine, (pyridyl)sulfonamide, and their metallic precursors, are suitable catalysts for the dehydrogenation of neat formic acid under self-pressurizing conditions. Quite surprisingly, we discovered that their structural differences can be related to performance differences in their respective structural families, with some tolerant or intolerant of pressure and others that are significantly advantaged by pressurized conditions. We further find important roles for H 2 and CO in catalyst activation and speciation. In fact, for certain systems, CO behaves as a healing reagent when trapped in a pressurizing reactor system, enabling extended life from systems that would be otherwise deactivated. Several catalysts are shown to evolve useful H 2 pressure from formic acid dehydrogenation, to replace compression cost with reaction entropy. Many of them rely on trace CO to initiate effectively. Mechanistic rationale and applications are discussed.
doi_str_mv 10.1039/d2cy00676f
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d2cy00676f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740790307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-87bcad71f599547cfa2acda32c80d6a5088c6923f0fe6b50f56afb761b0d3563</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhi0EotXSC3dQBBdUaWFsJ07CBVUL_ZAqwaEXLljO2N51ldipnSBtfz1etl0-LEseaR6_847HhLyk8J4Cbz9ohlsAUQv7hBwzKMtlWQv69BBX_IicpHQLeZUthYY9J0e8pi1rORyTH9-iSWmO7t7owoY4OCwUOl1os9nqGNbGq8kF_7FQvjB-imHMRBqj8-simrFXaFLxiBYYhnEnmG_kOE0vyDOr-mROHs4FuTn_crO6XF5_vbhanV0vsazEtGzqDpWuqa3atiprtIop1IozbEALVUHToGgZt2CN6CqwlVC2y312oHkl-IJ82suOczcYjTujqpfZ5aDiVgbl5L8Z7zZyHX5KClQ0wOqs8GavkE07mdBNBjcYvDc4Sdq0glOWoXcPZWK4m02a5OASmr5X3oQ5SdbQMm_Ig1mQt_-ht2GOPr-BZHUJdQscdlVP9xTGkFI09mCZgtyNV35mq--_x3ue4dd_N3lAH4eZgVd7ICY8ZP_8D_4LeU-rag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740790307</pqid></control><display><type>article</type><title>Pressurized formic acid dehydrogenation: an entropic spring replaces hydrogen compression cost</title><source>Royal Society Of Chemistry Journals</source><creator>Do, Van K ; Alfonso Vargas, Nicolas ; Chavez, Anthony J ; Zhang, Long ; Cherepakhin, Valeriy ; Lu, Zhiyao ; Currier, Robert P ; Dub, Pavel A ; Gordon, John C ; Williams, Travis J</creator><creatorcontrib>Do, Van K ; Alfonso Vargas, Nicolas ; Chavez, Anthony J ; Zhang, Long ; Cherepakhin, Valeriy ; Lu, Zhiyao ; Currier, Robert P ; Dub, Pavel A ; Gordon, John C ; Williams, Travis J</creatorcontrib><description>Formic acid is unique among liquid organic hydrogen carriers (LOHCs), because its dehydrogenation is highly entropically driven. This enables the evolution of high-pressure hydrogen at mild temperatures that is difficult to achieve with other LOHCs, conceptually by releasing the "spring" of energy stored entropically in the liquid carrier. Applications calling for hydrogen-on-demand, such as vehicle filling, require pressurized H 2 . Hydrogen compression dominates the cost for such applications, yet there are very few reports of selective, catalytic dehydrogenation of formic acid at elevated pressure. Herein, we show that homogenous catalysts with various ligand frameworks, including Noyori-type tridentate (PNP, SNS, SNP, SNPO), bidentate chelates (pyridyl)NHC, (pyridyl)phosphine, (pyridyl)sulfonamide, and their metallic precursors, are suitable catalysts for the dehydrogenation of neat formic acid under self-pressurizing conditions. Quite surprisingly, we discovered that their structural differences can be related to performance differences in their respective structural families, with some tolerant or intolerant of pressure and others that are significantly advantaged by pressurized conditions. We further find important roles for H 2 and CO in catalyst activation and speciation. In fact, for certain systems, CO behaves as a healing reagent when trapped in a pressurizing reactor system, enabling extended life from systems that would be otherwise deactivated. Several catalysts are shown to evolve useful H 2 pressure from formic acid dehydrogenation, to replace compression cost with reaction entropy. Many of them rely on trace CO to initiate effectively. Mechanistic rationale and applications are discussed.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/d2cy00676f</identifier><identifier>PMID: 37192930</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Acids ; Carbon monoxide ; Catalysts ; Dehydrogenation ; Formic acid ; Hydrogen ; Phosphines ; Pressurization ; Reagents ; Speciation ; Sulfonamides</subject><ispartof>Catalysis science &amp; technology, 2022-11, Vol.12 (23), p.7182-7189</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-87bcad71f599547cfa2acda32c80d6a5088c6923f0fe6b50f56afb761b0d3563</citedby><cites>FETCH-LOGICAL-c456t-87bcad71f599547cfa2acda32c80d6a5088c6923f0fe6b50f56afb761b0d3563</cites><orcidid>0000-0001-6299-3747 ; 0000-0003-1966-9794 ; 0000-0001-9750-6603 ; 0000-0003-2357-1060 ; 0000-0002-7675-1850 ; 0000-0002-4611-1772 ; 0000000162993747 ; 0000000246111772 ; 0000000319669794 ; 0000000323571060 ; 0000000276751850 ; 0000000197506603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37192930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1896312$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Do, Van K</creatorcontrib><creatorcontrib>Alfonso Vargas, Nicolas</creatorcontrib><creatorcontrib>Chavez, Anthony J</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Cherepakhin, Valeriy</creatorcontrib><creatorcontrib>Lu, Zhiyao</creatorcontrib><creatorcontrib>Currier, Robert P</creatorcontrib><creatorcontrib>Dub, Pavel A</creatorcontrib><creatorcontrib>Gordon, John C</creatorcontrib><creatorcontrib>Williams, Travis J</creatorcontrib><title>Pressurized formic acid dehydrogenation: an entropic spring replaces hydrogen compression cost</title><title>Catalysis science &amp; technology</title><addtitle>Catal Sci Technol</addtitle><description>Formic acid is unique among liquid organic hydrogen carriers (LOHCs), because its dehydrogenation is highly entropically driven. This enables the evolution of high-pressure hydrogen at mild temperatures that is difficult to achieve with other LOHCs, conceptually by releasing the "spring" of energy stored entropically in the liquid carrier. Applications calling for hydrogen-on-demand, such as vehicle filling, require pressurized H 2 . Hydrogen compression dominates the cost for such applications, yet there are very few reports of selective, catalytic dehydrogenation of formic acid at elevated pressure. Herein, we show that homogenous catalysts with various ligand frameworks, including Noyori-type tridentate (PNP, SNS, SNP, SNPO), bidentate chelates (pyridyl)NHC, (pyridyl)phosphine, (pyridyl)sulfonamide, and their metallic precursors, are suitable catalysts for the dehydrogenation of neat formic acid under self-pressurizing conditions. Quite surprisingly, we discovered that their structural differences can be related to performance differences in their respective structural families, with some tolerant or intolerant of pressure and others that are significantly advantaged by pressurized conditions. We further find important roles for H 2 and CO in catalyst activation and speciation. In fact, for certain systems, CO behaves as a healing reagent when trapped in a pressurizing reactor system, enabling extended life from systems that would be otherwise deactivated. Several catalysts are shown to evolve useful H 2 pressure from formic acid dehydrogenation, to replace compression cost with reaction entropy. Many of them rely on trace CO to initiate effectively. Mechanistic rationale and applications are discussed.</description><subject>Acids</subject><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Dehydrogenation</subject><subject>Formic acid</subject><subject>Hydrogen</subject><subject>Phosphines</subject><subject>Pressurization</subject><subject>Reagents</subject><subject>Speciation</subject><subject>Sulfonamides</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkk1v1DAQhi0EotXSC3dQBBdUaWFsJ07CBVUL_ZAqwaEXLljO2N51ldipnSBtfz1etl0-LEseaR6_847HhLyk8J4Cbz9ohlsAUQv7hBwzKMtlWQv69BBX_IicpHQLeZUthYY9J0e8pi1rORyTH9-iSWmO7t7owoY4OCwUOl1os9nqGNbGq8kF_7FQvjB-imHMRBqj8-simrFXaFLxiBYYhnEnmG_kOE0vyDOr-mROHs4FuTn_crO6XF5_vbhanV0vsazEtGzqDpWuqa3atiprtIop1IozbEALVUHToGgZt2CN6CqwlVC2y312oHkl-IJ82suOczcYjTujqpfZ5aDiVgbl5L8Z7zZyHX5KClQ0wOqs8GavkE07mdBNBjcYvDc4Sdq0glOWoXcPZWK4m02a5OASmr5X3oQ5SdbQMm_Ig1mQt_-ht2GOPr-BZHUJdQscdlVP9xTGkFI09mCZgtyNV35mq--_x3ue4dd_N3lAH4eZgVd7ICY8ZP_8D_4LeU-rag</recordid><startdate>20221129</startdate><enddate>20221129</enddate><creator>Do, Van K</creator><creator>Alfonso Vargas, Nicolas</creator><creator>Chavez, Anthony J</creator><creator>Zhang, Long</creator><creator>Cherepakhin, Valeriy</creator><creator>Lu, Zhiyao</creator><creator>Currier, Robert P</creator><creator>Dub, Pavel A</creator><creator>Gordon, John C</creator><creator>Williams, Travis J</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6299-3747</orcidid><orcidid>https://orcid.org/0000-0003-1966-9794</orcidid><orcidid>https://orcid.org/0000-0001-9750-6603</orcidid><orcidid>https://orcid.org/0000-0003-2357-1060</orcidid><orcidid>https://orcid.org/0000-0002-7675-1850</orcidid><orcidid>https://orcid.org/0000-0002-4611-1772</orcidid><orcidid>https://orcid.org/0000000162993747</orcidid><orcidid>https://orcid.org/0000000246111772</orcidid><orcidid>https://orcid.org/0000000319669794</orcidid><orcidid>https://orcid.org/0000000323571060</orcidid><orcidid>https://orcid.org/0000000276751850</orcidid><orcidid>https://orcid.org/0000000197506603</orcidid></search><sort><creationdate>20221129</creationdate><title>Pressurized formic acid dehydrogenation: an entropic spring replaces hydrogen compression cost</title><author>Do, Van K ; Alfonso Vargas, Nicolas ; Chavez, Anthony J ; Zhang, Long ; Cherepakhin, Valeriy ; Lu, Zhiyao ; Currier, Robert P ; Dub, Pavel A ; Gordon, John C ; Williams, Travis J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-87bcad71f599547cfa2acda32c80d6a5088c6923f0fe6b50f56afb761b0d3563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Dehydrogenation</topic><topic>Formic acid</topic><topic>Hydrogen</topic><topic>Phosphines</topic><topic>Pressurization</topic><topic>Reagents</topic><topic>Speciation</topic><topic>Sulfonamides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Do, Van K</creatorcontrib><creatorcontrib>Alfonso Vargas, Nicolas</creatorcontrib><creatorcontrib>Chavez, Anthony J</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Cherepakhin, Valeriy</creatorcontrib><creatorcontrib>Lu, Zhiyao</creatorcontrib><creatorcontrib>Currier, Robert P</creatorcontrib><creatorcontrib>Dub, Pavel A</creatorcontrib><creatorcontrib>Gordon, John C</creatorcontrib><creatorcontrib>Williams, Travis J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Do, Van K</au><au>Alfonso Vargas, Nicolas</au><au>Chavez, Anthony J</au><au>Zhang, Long</au><au>Cherepakhin, Valeriy</au><au>Lu, Zhiyao</au><au>Currier, Robert P</au><au>Dub, Pavel A</au><au>Gordon, John C</au><au>Williams, Travis J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pressurized formic acid dehydrogenation: an entropic spring replaces hydrogen compression cost</atitle><jtitle>Catalysis science &amp; technology</jtitle><addtitle>Catal Sci Technol</addtitle><date>2022-11-29</date><risdate>2022</risdate><volume>12</volume><issue>23</issue><spage>7182</spage><epage>7189</epage><pages>7182-7189</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>Formic acid is unique among liquid organic hydrogen carriers (LOHCs), because its dehydrogenation is highly entropically driven. This enables the evolution of high-pressure hydrogen at mild temperatures that is difficult to achieve with other LOHCs, conceptually by releasing the "spring" of energy stored entropically in the liquid carrier. Applications calling for hydrogen-on-demand, such as vehicle filling, require pressurized H 2 . Hydrogen compression dominates the cost for such applications, yet there are very few reports of selective, catalytic dehydrogenation of formic acid at elevated pressure. Herein, we show that homogenous catalysts with various ligand frameworks, including Noyori-type tridentate (PNP, SNS, SNP, SNPO), bidentate chelates (pyridyl)NHC, (pyridyl)phosphine, (pyridyl)sulfonamide, and their metallic precursors, are suitable catalysts for the dehydrogenation of neat formic acid under self-pressurizing conditions. Quite surprisingly, we discovered that their structural differences can be related to performance differences in their respective structural families, with some tolerant or intolerant of pressure and others that are significantly advantaged by pressurized conditions. We further find important roles for H 2 and CO in catalyst activation and speciation. In fact, for certain systems, CO behaves as a healing reagent when trapped in a pressurizing reactor system, enabling extended life from systems that would be otherwise deactivated. Several catalysts are shown to evolve useful H 2 pressure from formic acid dehydrogenation, to replace compression cost with reaction entropy. Many of them rely on trace CO to initiate effectively. Mechanistic rationale and applications are discussed.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37192930</pmid><doi>10.1039/d2cy00676f</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6299-3747</orcidid><orcidid>https://orcid.org/0000-0003-1966-9794</orcidid><orcidid>https://orcid.org/0000-0001-9750-6603</orcidid><orcidid>https://orcid.org/0000-0003-2357-1060</orcidid><orcidid>https://orcid.org/0000-0002-7675-1850</orcidid><orcidid>https://orcid.org/0000-0002-4611-1772</orcidid><orcidid>https://orcid.org/0000000162993747</orcidid><orcidid>https://orcid.org/0000000246111772</orcidid><orcidid>https://orcid.org/0000000319669794</orcidid><orcidid>https://orcid.org/0000000323571060</orcidid><orcidid>https://orcid.org/0000000276751850</orcidid><orcidid>https://orcid.org/0000000197506603</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2022-11, Vol.12 (23), p.7182-7189
issn 2044-4753
2044-4761
language eng
recordid cdi_rsc_primary_d2cy00676f
source Royal Society Of Chemistry Journals
subjects Acids
Carbon monoxide
Catalysts
Dehydrogenation
Formic acid
Hydrogen
Phosphines
Pressurization
Reagents
Speciation
Sulfonamides
title Pressurized formic acid dehydrogenation: an entropic spring replaces hydrogen compression cost
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A36%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pressurized%20formic%20acid%20dehydrogenation:%20an%20entropic%20spring%20replaces%20hydrogen%20compression%20cost&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Do,%20Van%20K&rft.date=2022-11-29&rft.volume=12&rft.issue=23&rft.spage=7182&rft.epage=7189&rft.pages=7182-7189&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/d2cy00676f&rft_dat=%3Cproquest_rsc_p%3E2740790307%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2740790307&rft_id=info:pmid/37192930&rfr_iscdi=true