Ultralow lattice thermal conductivity of binary compounds AB (A = Cs, Rb & B = Se, Te) with higher-order anharmonicity correction

By employing first-principles calculations that integrate self-consistent phonon theory and the Boltzmann transport equation, we have delved into the thermal transport characteristics of hexagonal anisotropic materials A 2 B (A = Cs, Rb and B = Se, Te). Our computational results have disclosed that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-05, Vol.25 (17), p.12157-12164
Hauptverfasser: Zeng, Shuming, Fang, Lei, Tu, Yusong, Zulfiqar, M, Li, Geng
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12164
container_issue 17
container_start_page 12157
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Zeng, Shuming
Fang, Lei
Tu, Yusong
Zulfiqar, M
Li, Geng
description By employing first-principles calculations that integrate self-consistent phonon theory and the Boltzmann transport equation, we have delved into the thermal transport characteristics of hexagonal anisotropic materials A 2 B (A = Cs, Rb and B = Se, Te). Our computational results have disclosed that these A 2 B materials exhibit ultralow lattice thermal conductivity ( κ L ) at room temperature. Specifically, in the case of Cs 2 Te, the κ L values are a mere 0.15 W m −1 K −1 in the a ( b ) direction and 0.22 W m −1 K −1 in the c direction, both markedly less than the thermal conductivity of quartz glass, a conventional thermoelectric material (0.9 W m −1 K −1 ). Importantly, our calculations encompass higher-order anharmonic effects while computing the lattice thermal conductivities of these materials. This is essential since pronounced anharmonicity leads to a decrease in phonon group velocity, and consequently, lowers the κ L values. Our results establish a theoretical foundation for exploring the thermal transport characteristics of anisotropic materials with substantial anharmonicity. Furthermore, the binary compounds A 2 B proffer a gamut of possibilities for a wide range of applications in thermoelectrics and thermal management, owing to their ultralow lattice thermal conductivity. By employing first-principles calculations that integrate self-consistent phonon theory and the Boltzmann transport equation, we have delved into the thermal transport characteristics of hexagonal anisotropic materials A 2 B (A = Cs, Rb and B = Se, Te).
doi_str_mv 10.1039/d2cp05542b
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d2cp05542b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d2cp05542b</sourcerecordid><originalsourceid>FETCH-rsc_primary_d2cp05542b3</originalsourceid><addsrcrecordid>eNqFjzFvwjAUhC0EEhS6dK_0JlQkAjZJaBk6BFTUucAcOY5pXDl29GxAjPxzXAm1I9Pdu5O-pyPkidEJo_FiWs5EQ9M0mRUt0mPJPI4W9C1p__nXeZc8OPdDKWUpi3vkstMeubYn0Nx7JST4SmLNNQhryoPw6qj8GeweCmU4nkNcN_ZgSgfZEl4yeIeVG8NXAUNYhmMjx7CVIzgpX0GlvgMsslhKBG4qjrU1SvwChUWUgW7NgHT2XDv5eNM-eV5_bFefETqRN6jq8DX_3xXf668JGlCH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultralow lattice thermal conductivity of binary compounds AB (A = Cs, Rb &amp; B = Se, Te) with higher-order anharmonicity correction</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Zeng, Shuming ; Fang, Lei ; Tu, Yusong ; Zulfiqar, M ; Li, Geng</creator><creatorcontrib>Zeng, Shuming ; Fang, Lei ; Tu, Yusong ; Zulfiqar, M ; Li, Geng</creatorcontrib><description>By employing first-principles calculations that integrate self-consistent phonon theory and the Boltzmann transport equation, we have delved into the thermal transport characteristics of hexagonal anisotropic materials A 2 B (A = Cs, Rb and B = Se, Te). Our computational results have disclosed that these A 2 B materials exhibit ultralow lattice thermal conductivity ( κ L ) at room temperature. Specifically, in the case of Cs 2 Te, the κ L values are a mere 0.15 W m −1 K −1 in the a ( b ) direction and 0.22 W m −1 K −1 in the c direction, both markedly less than the thermal conductivity of quartz glass, a conventional thermoelectric material (0.9 W m −1 K −1 ). Importantly, our calculations encompass higher-order anharmonic effects while computing the lattice thermal conductivities of these materials. This is essential since pronounced anharmonicity leads to a decrease in phonon group velocity, and consequently, lowers the κ L values. Our results establish a theoretical foundation for exploring the thermal transport characteristics of anisotropic materials with substantial anharmonicity. Furthermore, the binary compounds A 2 B proffer a gamut of possibilities for a wide range of applications in thermoelectrics and thermal management, owing to their ultralow lattice thermal conductivity. By employing first-principles calculations that integrate self-consistent phonon theory and the Boltzmann transport equation, we have delved into the thermal transport characteristics of hexagonal anisotropic materials A 2 B (A = Cs, Rb and B = Se, Te).</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp05542b</identifier><ispartof>Physical chemistry chemical physics : PCCP, 2023-05, Vol.25 (17), p.12157-12164</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zeng, Shuming</creatorcontrib><creatorcontrib>Fang, Lei</creatorcontrib><creatorcontrib>Tu, Yusong</creatorcontrib><creatorcontrib>Zulfiqar, M</creatorcontrib><creatorcontrib>Li, Geng</creatorcontrib><title>Ultralow lattice thermal conductivity of binary compounds AB (A = Cs, Rb &amp; B = Se, Te) with higher-order anharmonicity correction</title><title>Physical chemistry chemical physics : PCCP</title><description>By employing first-principles calculations that integrate self-consistent phonon theory and the Boltzmann transport equation, we have delved into the thermal transport characteristics of hexagonal anisotropic materials A 2 B (A = Cs, Rb and B = Se, Te). Our computational results have disclosed that these A 2 B materials exhibit ultralow lattice thermal conductivity ( κ L ) at room temperature. Specifically, in the case of Cs 2 Te, the κ L values are a mere 0.15 W m −1 K −1 in the a ( b ) direction and 0.22 W m −1 K −1 in the c direction, both markedly less than the thermal conductivity of quartz glass, a conventional thermoelectric material (0.9 W m −1 K −1 ). Importantly, our calculations encompass higher-order anharmonic effects while computing the lattice thermal conductivities of these materials. This is essential since pronounced anharmonicity leads to a decrease in phonon group velocity, and consequently, lowers the κ L values. Our results establish a theoretical foundation for exploring the thermal transport characteristics of anisotropic materials with substantial anharmonicity. Furthermore, the binary compounds A 2 B proffer a gamut of possibilities for a wide range of applications in thermoelectrics and thermal management, owing to their ultralow lattice thermal conductivity. By employing first-principles calculations that integrate self-consistent phonon theory and the Boltzmann transport equation, we have delved into the thermal transport characteristics of hexagonal anisotropic materials A 2 B (A = Cs, Rb and B = Se, Te).</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjzFvwjAUhC0EEhS6dK_0JlQkAjZJaBk6BFTUucAcOY5pXDl29GxAjPxzXAm1I9Pdu5O-pyPkidEJo_FiWs5EQ9M0mRUt0mPJPI4W9C1p__nXeZc8OPdDKWUpi3vkstMeubYn0Nx7JST4SmLNNQhryoPw6qj8GeweCmU4nkNcN_ZgSgfZEl4yeIeVG8NXAUNYhmMjx7CVIzgpX0GlvgMsslhKBG4qjrU1SvwChUWUgW7NgHT2XDv5eNM-eV5_bFefETqRN6jq8DX_3xXf668JGlCH</recordid><startdate>20230503</startdate><enddate>20230503</enddate><creator>Zeng, Shuming</creator><creator>Fang, Lei</creator><creator>Tu, Yusong</creator><creator>Zulfiqar, M</creator><creator>Li, Geng</creator><scope/></search><sort><creationdate>20230503</creationdate><title>Ultralow lattice thermal conductivity of binary compounds AB (A = Cs, Rb &amp; B = Se, Te) with higher-order anharmonicity correction</title><author>Zeng, Shuming ; Fang, Lei ; Tu, Yusong ; Zulfiqar, M ; Li, Geng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d2cp05542b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Shuming</creatorcontrib><creatorcontrib>Fang, Lei</creatorcontrib><creatorcontrib>Tu, Yusong</creatorcontrib><creatorcontrib>Zulfiqar, M</creatorcontrib><creatorcontrib>Li, Geng</creatorcontrib><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Shuming</au><au>Fang, Lei</au><au>Tu, Yusong</au><au>Zulfiqar, M</au><au>Li, Geng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralow lattice thermal conductivity of binary compounds AB (A = Cs, Rb &amp; B = Se, Te) with higher-order anharmonicity correction</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-05-03</date><risdate>2023</risdate><volume>25</volume><issue>17</issue><spage>12157</spage><epage>12164</epage><pages>12157-12164</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>By employing first-principles calculations that integrate self-consistent phonon theory and the Boltzmann transport equation, we have delved into the thermal transport characteristics of hexagonal anisotropic materials A 2 B (A = Cs, Rb and B = Se, Te). Our computational results have disclosed that these A 2 B materials exhibit ultralow lattice thermal conductivity ( κ L ) at room temperature. Specifically, in the case of Cs 2 Te, the κ L values are a mere 0.15 W m −1 K −1 in the a ( b ) direction and 0.22 W m −1 K −1 in the c direction, both markedly less than the thermal conductivity of quartz glass, a conventional thermoelectric material (0.9 W m −1 K −1 ). Importantly, our calculations encompass higher-order anharmonic effects while computing the lattice thermal conductivities of these materials. This is essential since pronounced anharmonicity leads to a decrease in phonon group velocity, and consequently, lowers the κ L values. Our results establish a theoretical foundation for exploring the thermal transport characteristics of anisotropic materials with substantial anharmonicity. Furthermore, the binary compounds A 2 B proffer a gamut of possibilities for a wide range of applications in thermoelectrics and thermal management, owing to their ultralow lattice thermal conductivity. By employing first-principles calculations that integrate self-consistent phonon theory and the Boltzmann transport equation, we have delved into the thermal transport characteristics of hexagonal anisotropic materials A 2 B (A = Cs, Rb and B = Se, Te).</abstract><doi>10.1039/d2cp05542b</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-05, Vol.25 (17), p.12157-12164
issn 1463-9076
1463-9084
language
recordid cdi_rsc_primary_d2cp05542b
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Ultralow lattice thermal conductivity of binary compounds AB (A = Cs, Rb & B = Se, Te) with higher-order anharmonicity correction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralow%20lattice%20thermal%20conductivity%20of%20binary%20compounds%20AB%20(A%20=%20Cs,%20Rb%20&%20B%20=%20Se,%20Te)%20with%20higher-order%20anharmonicity%20correction&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Zeng,%20Shuming&rft.date=2023-05-03&rft.volume=25&rft.issue=17&rft.spage=12157&rft.epage=12164&rft.pages=12157-12164&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp05542b&rft_dat=%3Crsc%3Ed2cp05542b%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true