Rational design of formamidine tin-based perovskite solar cell with 30% potential efficiency 1-D device simulation

As a promising photovoltaic technology, halide perovskite solar cells (PSCs) have recently attracted wide attention. This work presents a systematic simulation of low bandgap formamidinium tin iodide (FASnI 3 )-based p-n heterojunction PSCs to investigate the effects of multiple optoelectronic varia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-03, Vol.25 (13), p.9413-9427
Hauptverfasser: Liang, Kaiwen, Huang, Like, Wang, Tianzhou, Wang, Chaofeng, Guo, Yi, Yue, Yunliang, Liu, Xiaohui, Zhang, Jing, Hu, Ziyang, Zhu, Yuejin
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9427
container_issue 13
container_start_page 9413
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Liang, Kaiwen
Huang, Like
Wang, Tianzhou
Wang, Chaofeng
Guo, Yi
Yue, Yunliang
Liu, Xiaohui
Zhang, Jing
Hu, Ziyang
Zhu, Yuejin
description As a promising photovoltaic technology, halide perovskite solar cells (PSCs) have recently attracted wide attention. This work presents a systematic simulation of low bandgap formamidinium tin iodide (FASnI 3 )-based p-n heterojunction PSCs to investigate the effects of multiple optoelectronic variations on the photovoltaic performance. The structures of the simulated devices are n-i-p, electron transport layer-free (ETL-free), hole transport layer-free (HTL-free), and inverted HTL-free. The simulation is conducted with the Solar Cell Capacitance Simulator (SCAPS-1D). The power conversion efficiencies (PCEs) dramatically decrease when the acceptor doping density ( N A ) of the absorber layer exceeds 10 16 cm −3 . For all devices, the photovoltaic parameters dramatically decrease when the absorber defect density ( N t ) is over 10 15 cm −3 , and the best absorber layer thickness is 1000 nm. It should be pointed out that the N t and the interface defect layer (IDL) are the primary culprits that seriously affect the device performance. When the interfacial defect density ( N it ) exceeds 10 12 cm −3 , PCEs begin to decline significantly. Therefore, paying attention to these defect layers is necessary to improve the PCE. Furthermore, the proper conduction band offset (CBO) between the electron transport layer (ETL) and absorber layer positively affects PSCs' performance. These simulation results help fabricate highly efficient and environment-friendly narrow bandgap PSCs. A rational design of low bandgap formamidine tin based perovskite solar cell is conducted via device simulation. The device parameters that influence the device performance are comprehensively investigated and optimized for higher performance.
doi_str_mv 10.1039/d2cp05226a
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d2cp05226a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d2cp05226a</sourcerecordid><originalsourceid>FETCH-rsc_primary_d2cp05226a3</originalsourceid><addsrcrecordid>eNqFj72LAjEUxIOc4GdjL7zGcjXZ6HrWnoe12EvMvujTbLIkOcX__haRs7xqBob5DcPYSPCp4HI1K3Nd80WeF6rFumJeyGzFP-cff35ZdFgvxgvnXCyE7LKwU4m8UxZKjHRy4A0YHypVUUkOIZHLjipiCTUGf4tXSgjRWxVAo7Vwp3QGySdQ-4QuUQNCY0gTOv0AkX013BvppkPVj31uDVjbKBtx-NI-G39v9uttFqI-1IEqFR6H9xH5X_4LFtRM8g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rational design of formamidine tin-based perovskite solar cell with 30% potential efficiency 1-D device simulation</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Liang, Kaiwen ; Huang, Like ; Wang, Tianzhou ; Wang, Chaofeng ; Guo, Yi ; Yue, Yunliang ; Liu, Xiaohui ; Zhang, Jing ; Hu, Ziyang ; Zhu, Yuejin</creator><creatorcontrib>Liang, Kaiwen ; Huang, Like ; Wang, Tianzhou ; Wang, Chaofeng ; Guo, Yi ; Yue, Yunliang ; Liu, Xiaohui ; Zhang, Jing ; Hu, Ziyang ; Zhu, Yuejin</creatorcontrib><description>As a promising photovoltaic technology, halide perovskite solar cells (PSCs) have recently attracted wide attention. This work presents a systematic simulation of low bandgap formamidinium tin iodide (FASnI 3 )-based p-n heterojunction PSCs to investigate the effects of multiple optoelectronic variations on the photovoltaic performance. The structures of the simulated devices are n-i-p, electron transport layer-free (ETL-free), hole transport layer-free (HTL-free), and inverted HTL-free. The simulation is conducted with the Solar Cell Capacitance Simulator (SCAPS-1D). The power conversion efficiencies (PCEs) dramatically decrease when the acceptor doping density ( N A ) of the absorber layer exceeds 10 16 cm −3 . For all devices, the photovoltaic parameters dramatically decrease when the absorber defect density ( N t ) is over 10 15 cm −3 , and the best absorber layer thickness is 1000 nm. It should be pointed out that the N t and the interface defect layer (IDL) are the primary culprits that seriously affect the device performance. When the interfacial defect density ( N it ) exceeds 10 12 cm −3 , PCEs begin to decline significantly. Therefore, paying attention to these defect layers is necessary to improve the PCE. Furthermore, the proper conduction band offset (CBO) between the electron transport layer (ETL) and absorber layer positively affects PSCs' performance. These simulation results help fabricate highly efficient and environment-friendly narrow bandgap PSCs. A rational design of low bandgap formamidine tin based perovskite solar cell is conducted via device simulation. The device parameters that influence the device performance are comprehensively investigated and optimized for higher performance.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp05226a</identifier><ispartof>Physical chemistry chemical physics : PCCP, 2023-03, Vol.25 (13), p.9413-9427</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liang, Kaiwen</creatorcontrib><creatorcontrib>Huang, Like</creatorcontrib><creatorcontrib>Wang, Tianzhou</creatorcontrib><creatorcontrib>Wang, Chaofeng</creatorcontrib><creatorcontrib>Guo, Yi</creatorcontrib><creatorcontrib>Yue, Yunliang</creatorcontrib><creatorcontrib>Liu, Xiaohui</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Hu, Ziyang</creatorcontrib><creatorcontrib>Zhu, Yuejin</creatorcontrib><title>Rational design of formamidine tin-based perovskite solar cell with 30% potential efficiency 1-D device simulation</title><title>Physical chemistry chemical physics : PCCP</title><description>As a promising photovoltaic technology, halide perovskite solar cells (PSCs) have recently attracted wide attention. This work presents a systematic simulation of low bandgap formamidinium tin iodide (FASnI 3 )-based p-n heterojunction PSCs to investigate the effects of multiple optoelectronic variations on the photovoltaic performance. The structures of the simulated devices are n-i-p, electron transport layer-free (ETL-free), hole transport layer-free (HTL-free), and inverted HTL-free. The simulation is conducted with the Solar Cell Capacitance Simulator (SCAPS-1D). The power conversion efficiencies (PCEs) dramatically decrease when the acceptor doping density ( N A ) of the absorber layer exceeds 10 16 cm −3 . For all devices, the photovoltaic parameters dramatically decrease when the absorber defect density ( N t ) is over 10 15 cm −3 , and the best absorber layer thickness is 1000 nm. It should be pointed out that the N t and the interface defect layer (IDL) are the primary culprits that seriously affect the device performance. When the interfacial defect density ( N it ) exceeds 10 12 cm −3 , PCEs begin to decline significantly. Therefore, paying attention to these defect layers is necessary to improve the PCE. Furthermore, the proper conduction band offset (CBO) between the electron transport layer (ETL) and absorber layer positively affects PSCs' performance. These simulation results help fabricate highly efficient and environment-friendly narrow bandgap PSCs. A rational design of low bandgap formamidine tin based perovskite solar cell is conducted via device simulation. The device parameters that influence the device performance are comprehensively investigated and optimized for higher performance.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj72LAjEUxIOc4GdjL7zGcjXZ6HrWnoe12EvMvujTbLIkOcX__haRs7xqBob5DcPYSPCp4HI1K3Nd80WeF6rFumJeyGzFP-cff35ZdFgvxgvnXCyE7LKwU4m8UxZKjHRy4A0YHypVUUkOIZHLjipiCTUGf4tXSgjRWxVAo7Vwp3QGySdQ-4QuUQNCY0gTOv0AkX013BvppkPVj31uDVjbKBtx-NI-G39v9uttFqI-1IEqFR6H9xH5X_4LFtRM8g</recordid><startdate>20230329</startdate><enddate>20230329</enddate><creator>Liang, Kaiwen</creator><creator>Huang, Like</creator><creator>Wang, Tianzhou</creator><creator>Wang, Chaofeng</creator><creator>Guo, Yi</creator><creator>Yue, Yunliang</creator><creator>Liu, Xiaohui</creator><creator>Zhang, Jing</creator><creator>Hu, Ziyang</creator><creator>Zhu, Yuejin</creator><scope/></search><sort><creationdate>20230329</creationdate><title>Rational design of formamidine tin-based perovskite solar cell with 30% potential efficiency 1-D device simulation</title><author>Liang, Kaiwen ; Huang, Like ; Wang, Tianzhou ; Wang, Chaofeng ; Guo, Yi ; Yue, Yunliang ; Liu, Xiaohui ; Zhang, Jing ; Hu, Ziyang ; Zhu, Yuejin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d2cp05226a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Kaiwen</creatorcontrib><creatorcontrib>Huang, Like</creatorcontrib><creatorcontrib>Wang, Tianzhou</creatorcontrib><creatorcontrib>Wang, Chaofeng</creatorcontrib><creatorcontrib>Guo, Yi</creatorcontrib><creatorcontrib>Yue, Yunliang</creatorcontrib><creatorcontrib>Liu, Xiaohui</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Hu, Ziyang</creatorcontrib><creatorcontrib>Zhu, Yuejin</creatorcontrib><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Kaiwen</au><au>Huang, Like</au><au>Wang, Tianzhou</au><au>Wang, Chaofeng</au><au>Guo, Yi</au><au>Yue, Yunliang</au><au>Liu, Xiaohui</au><au>Zhang, Jing</au><au>Hu, Ziyang</au><au>Zhu, Yuejin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational design of formamidine tin-based perovskite solar cell with 30% potential efficiency 1-D device simulation</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-03-29</date><risdate>2023</risdate><volume>25</volume><issue>13</issue><spage>9413</spage><epage>9427</epage><pages>9413-9427</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>As a promising photovoltaic technology, halide perovskite solar cells (PSCs) have recently attracted wide attention. This work presents a systematic simulation of low bandgap formamidinium tin iodide (FASnI 3 )-based p-n heterojunction PSCs to investigate the effects of multiple optoelectronic variations on the photovoltaic performance. The structures of the simulated devices are n-i-p, electron transport layer-free (ETL-free), hole transport layer-free (HTL-free), and inverted HTL-free. The simulation is conducted with the Solar Cell Capacitance Simulator (SCAPS-1D). The power conversion efficiencies (PCEs) dramatically decrease when the acceptor doping density ( N A ) of the absorber layer exceeds 10 16 cm −3 . For all devices, the photovoltaic parameters dramatically decrease when the absorber defect density ( N t ) is over 10 15 cm −3 , and the best absorber layer thickness is 1000 nm. It should be pointed out that the N t and the interface defect layer (IDL) are the primary culprits that seriously affect the device performance. When the interfacial defect density ( N it ) exceeds 10 12 cm −3 , PCEs begin to decline significantly. Therefore, paying attention to these defect layers is necessary to improve the PCE. Furthermore, the proper conduction band offset (CBO) between the electron transport layer (ETL) and absorber layer positively affects PSCs' performance. These simulation results help fabricate highly efficient and environment-friendly narrow bandgap PSCs. A rational design of low bandgap formamidine tin based perovskite solar cell is conducted via device simulation. The device parameters that influence the device performance are comprehensively investigated and optimized for higher performance.</abstract><doi>10.1039/d2cp05226a</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-03, Vol.25 (13), p.9413-9427
issn 1463-9076
1463-9084
language
recordid cdi_rsc_primary_d2cp05226a
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Rational design of formamidine tin-based perovskite solar cell with 30% potential efficiency 1-D device simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20design%20of%20formamidine%20tin-based%20perovskite%20solar%20cell%20with%2030%25%20potential%20efficiency%201-D%20device%20simulation&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Liang,%20Kaiwen&rft.date=2023-03-29&rft.volume=25&rft.issue=13&rft.spage=9413&rft.epage=9427&rft.pages=9413-9427&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp05226a&rft_dat=%3Crsc%3Ed2cp05226a%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true