Adsorption kinetics of NO gas on oxyfluorinated graphene film

We report the fabrication of high-performance NO 2 gas sensors based on oxyfluorinated graphene (OFG) layers. At room temperature, the times of adsorption/desorption of NO 2 on/from the surface of thin OFG films are less than 1200 s and can be reduced by increasing the operation temperature. The sen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-01, Vol.25 (3), p.284-289
Hauptverfasser: Sysoev, Vitalii I, Yamaletdinov, Ruslan D, Plyusnin, Pavel E, Okotrub, Alexander V, Bulusheva, Lyubov G
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 289
container_issue 3
container_start_page 284
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Sysoev, Vitalii I
Yamaletdinov, Ruslan D
Plyusnin, Pavel E
Okotrub, Alexander V
Bulusheva, Lyubov G
description We report the fabrication of high-performance NO 2 gas sensors based on oxyfluorinated graphene (OFG) layers. At room temperature, the times of adsorption/desorption of NO 2 on/from the surface of thin OFG films are less than 1200 s and can be reduced by increasing the operation temperature. The sensors are capable of detecting NO 2 molecules at sub-ppm level with a sensitivity of 0.15 ppm −1 at 348 K. The temperature dependence of the rate constants shows that the simultaneous presence of a large number of fluorine- and oxygen-containing groups on the graphene surface provides the formation of low-energy sites (Δ H a < 0.1 eV) for NO 2 adsorption. The combination of the high sensitivity of the sensor and a reasonable adsorption/desorption time of the analyte is promising for on-line monitoring. Illustration of NO 2 adsorption sites on the oxyfluorinated graphene surface.
doi_str_mv 10.1039/d2cp04926k
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d2cp04926k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d2cp04926k</sourcerecordid><originalsourceid>FETCH-rsc_primary_d2cp04926k3</originalsourceid><addsrcrecordid>eNpjYBAyNNAzNDC21E8xSi4wMLE0MstmYuA0NDEz1rU0sDBhgbPNzTgYuIqLswwMDAxNDY05GWwdU4rziwpKMvPzFLIz81JLMpOLFfLTFPz8FdITgaw8hfyKyrSc0vyizLzEktQUhfSixIKM1LxUhbTMnFweBta0xJziVF4ozc0g6-Ya4uyhW1ScHF9QlJmbWFQZj3CTMSF5ABSUOgs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adsorption kinetics of NO gas on oxyfluorinated graphene film</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Sysoev, Vitalii I ; Yamaletdinov, Ruslan D ; Plyusnin, Pavel E ; Okotrub, Alexander V ; Bulusheva, Lyubov G</creator><creatorcontrib>Sysoev, Vitalii I ; Yamaletdinov, Ruslan D ; Plyusnin, Pavel E ; Okotrub, Alexander V ; Bulusheva, Lyubov G</creatorcontrib><description>We report the fabrication of high-performance NO 2 gas sensors based on oxyfluorinated graphene (OFG) layers. At room temperature, the times of adsorption/desorption of NO 2 on/from the surface of thin OFG films are less than 1200 s and can be reduced by increasing the operation temperature. The sensors are capable of detecting NO 2 molecules at sub-ppm level with a sensitivity of 0.15 ppm −1 at 348 K. The temperature dependence of the rate constants shows that the simultaneous presence of a large number of fluorine- and oxygen-containing groups on the graphene surface provides the formation of low-energy sites (Δ H a &lt; 0.1 eV) for NO 2 adsorption. The combination of the high sensitivity of the sensor and a reasonable adsorption/desorption time of the analyte is promising for on-line monitoring. Illustration of NO 2 adsorption sites on the oxyfluorinated graphene surface.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp04926k</identifier><ispartof>Physical chemistry chemical physics : PCCP, 2023-01, Vol.25 (3), p.284-289</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sysoev, Vitalii I</creatorcontrib><creatorcontrib>Yamaletdinov, Ruslan D</creatorcontrib><creatorcontrib>Plyusnin, Pavel E</creatorcontrib><creatorcontrib>Okotrub, Alexander V</creatorcontrib><creatorcontrib>Bulusheva, Lyubov G</creatorcontrib><title>Adsorption kinetics of NO gas on oxyfluorinated graphene film</title><title>Physical chemistry chemical physics : PCCP</title><description>We report the fabrication of high-performance NO 2 gas sensors based on oxyfluorinated graphene (OFG) layers. At room temperature, the times of adsorption/desorption of NO 2 on/from the surface of thin OFG films are less than 1200 s and can be reduced by increasing the operation temperature. The sensors are capable of detecting NO 2 molecules at sub-ppm level with a sensitivity of 0.15 ppm −1 at 348 K. The temperature dependence of the rate constants shows that the simultaneous presence of a large number of fluorine- and oxygen-containing groups on the graphene surface provides the formation of low-energy sites (Δ H a &lt; 0.1 eV) for NO 2 adsorption. The combination of the high sensitivity of the sensor and a reasonable adsorption/desorption time of the analyte is promising for on-line monitoring. Illustration of NO 2 adsorption sites on the oxyfluorinated graphene surface.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYBAyNNAzNDC21E8xSi4wMLE0MstmYuA0NDEz1rU0sDBhgbPNzTgYuIqLswwMDAxNDY05GWwdU4rziwpKMvPzFLIz81JLMpOLFfLTFPz8FdITgaw8hfyKyrSc0vyizLzEktQUhfSixIKM1LxUhbTMnFweBta0xJziVF4ozc0g6-Ya4uyhW1ScHF9QlJmbWFQZj3CTMSF5ABSUOgs</recordid><startdate>20230118</startdate><enddate>20230118</enddate><creator>Sysoev, Vitalii I</creator><creator>Yamaletdinov, Ruslan D</creator><creator>Plyusnin, Pavel E</creator><creator>Okotrub, Alexander V</creator><creator>Bulusheva, Lyubov G</creator><scope/></search><sort><creationdate>20230118</creationdate><title>Adsorption kinetics of NO gas on oxyfluorinated graphene film</title><author>Sysoev, Vitalii I ; Yamaletdinov, Ruslan D ; Plyusnin, Pavel E ; Okotrub, Alexander V ; Bulusheva, Lyubov G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d2cp04926k3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sysoev, Vitalii I</creatorcontrib><creatorcontrib>Yamaletdinov, Ruslan D</creatorcontrib><creatorcontrib>Plyusnin, Pavel E</creatorcontrib><creatorcontrib>Okotrub, Alexander V</creatorcontrib><creatorcontrib>Bulusheva, Lyubov G</creatorcontrib><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sysoev, Vitalii I</au><au>Yamaletdinov, Ruslan D</au><au>Plyusnin, Pavel E</au><au>Okotrub, Alexander V</au><au>Bulusheva, Lyubov G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption kinetics of NO gas on oxyfluorinated graphene film</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-01-18</date><risdate>2023</risdate><volume>25</volume><issue>3</issue><spage>284</spage><epage>289</epage><pages>284-289</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We report the fabrication of high-performance NO 2 gas sensors based on oxyfluorinated graphene (OFG) layers. At room temperature, the times of adsorption/desorption of NO 2 on/from the surface of thin OFG films are less than 1200 s and can be reduced by increasing the operation temperature. The sensors are capable of detecting NO 2 molecules at sub-ppm level with a sensitivity of 0.15 ppm −1 at 348 K. The temperature dependence of the rate constants shows that the simultaneous presence of a large number of fluorine- and oxygen-containing groups on the graphene surface provides the formation of low-energy sites (Δ H a &lt; 0.1 eV) for NO 2 adsorption. The combination of the high sensitivity of the sensor and a reasonable adsorption/desorption time of the analyte is promising for on-line monitoring. Illustration of NO 2 adsorption sites on the oxyfluorinated graphene surface.</abstract><doi>10.1039/d2cp04926k</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-01, Vol.25 (3), p.284-289
issn 1463-9076
1463-9084
language
recordid cdi_rsc_primary_d2cp04926k
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Adsorption kinetics of NO gas on oxyfluorinated graphene film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20kinetics%20of%20NO%20gas%20on%20oxyfluorinated%20graphene%20film&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Sysoev,%20Vitalii%20I&rft.date=2023-01-18&rft.volume=25&rft.issue=3&rft.spage=284&rft.epage=289&rft.pages=284-289&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp04926k&rft_dat=%3Crsc%3Ed2cp04926k%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true