Scalable graph neural network for NMR chemical shift prediction
Graph neural networks (GNNs) have been proven effective in the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts of a molecule. Existing methods, despite their effectiveness, suffer from high space complexity and are therefore limited to relatively small molecules. In...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2022-11, Vol.24 (43), p.2687-26878 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26878 |
---|---|
container_issue | 43 |
container_start_page | 2687 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 24 |
creator | Han, Jongmin Kang, Hyungu Kang, Seokho Kwon, Youngchun Lee, Dongseon Choi, Youn-Suk |
description | Graph neural networks (GNNs) have been proven effective in the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts of a molecule. Existing methods, despite their effectiveness, suffer from high space complexity and are therefore limited to relatively small molecules. In this work, we propose a scalable GNN for NMR chemical shift prediction. To reduce the space complexity, we sparsify the graph representation of a molecule by regarding only heavy atoms as nodes and their chemical bonds as edges. To better learn from the sparsified graph representation, we improve the message passing and readout functions in the GNN. For the message passing function, we adapt the attention mechanism and residual connection to better capture local information around each node. For the readout function, we use both node-level and graph-level embeddings as the local and global information to better predict node-level chemical shifts. Through the experimental investigation using
13
C and
1
H NMR datasets, we demonstrate that the proposed method yields higher prediction accuracy and is more scalable to large molecules having many heavy atoms.
We present a scalable graph neural network (GNN) with improved message passing and readout functions for the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts. |
doi_str_mv | 10.1039/d2cp04542g |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d2cp04542g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731055599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-762ef5f329837d4fb2c4b2a9c0fe5cbf6785b5f611386407b1815ac4318c71483</originalsourceid><addsrcrecordid>eNpd0M1LwzAYBvAgCs7pxbtQ8CJCNW8-muQkMnUK8wM_ziXNkq2za2rSIv73dk4meHrew4-HlwehQ8BngKk6nxLTYMYZmW2hAbCMpgpLtr25RbaL9mJcYIyBAx2gixejK11UNpkF3cyT2nZBV320nz68J86H5OH-OTFzuyx7mcR56dqkCXZamrb09T7acbqK9uA3h-jt5vp1dJtOHsd3o8tJaghjbSoyYh13lChJxZS5ghhWEK0MdpabwmVC8oK7DIDKjGFRgASuDaMgjQAm6RCdrHub4D86G9t8WUZjq0rX1ncxJ4IC5pwr1dPjf3Thu1D3360UVZIT4L06XSsTfIzBurwJ5VKHrxxwvtoyvyKjp58txz0-WuMQzcb9bU2_ARbabmk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733985215</pqid></control><display><type>article</type><title>Scalable graph neural network for NMR chemical shift prediction</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Han, Jongmin ; Kang, Hyungu ; Kang, Seokho ; Kwon, Youngchun ; Lee, Dongseon ; Choi, Youn-Suk</creator><creatorcontrib>Han, Jongmin ; Kang, Hyungu ; Kang, Seokho ; Kwon, Youngchun ; Lee, Dongseon ; Choi, Youn-Suk</creatorcontrib><description>Graph neural networks (GNNs) have been proven effective in the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts of a molecule. Existing methods, despite their effectiveness, suffer from high space complexity and are therefore limited to relatively small molecules. In this work, we propose a scalable GNN for NMR chemical shift prediction. To reduce the space complexity, we sparsify the graph representation of a molecule by regarding only heavy atoms as nodes and their chemical bonds as edges. To better learn from the sparsified graph representation, we improve the message passing and readout functions in the GNN. For the message passing function, we adapt the attention mechanism and residual connection to better capture local information around each node. For the readout function, we use both node-level and graph-level embeddings as the local and global information to better predict node-level chemical shifts. Through the experimental investigation using
13
C and
1
H NMR datasets, we demonstrate that the proposed method yields higher prediction accuracy and is more scalable to large molecules having many heavy atoms.
We present a scalable graph neural network (GNN) with improved message passing and readout functions for the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp04542g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical bonds ; Chemical equilibrium ; Complexity ; Graph neural networks ; Graph representations ; Graph theory ; Graphical representations ; Message passing ; Neural networks ; NMR ; Nodes ; Nuclear magnetic resonance</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-11, Vol.24 (43), p.2687-26878</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c244t-762ef5f329837d4fb2c4b2a9c0fe5cbf6785b5f611386407b1815ac4318c71483</citedby><cites>FETCH-LOGICAL-c244t-762ef5f329837d4fb2c4b2a9c0fe5cbf6785b5f611386407b1815ac4318c71483</cites><orcidid>0000-0001-7911-3670 ; 0000-0002-0803-5588 ; 0000-0002-0960-0294 ; 0000-0001-7119-8788 ; 0000-0003-0800-5925 ; 0000-0002-9355-7400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Han, Jongmin</creatorcontrib><creatorcontrib>Kang, Hyungu</creatorcontrib><creatorcontrib>Kang, Seokho</creatorcontrib><creatorcontrib>Kwon, Youngchun</creatorcontrib><creatorcontrib>Lee, Dongseon</creatorcontrib><creatorcontrib>Choi, Youn-Suk</creatorcontrib><title>Scalable graph neural network for NMR chemical shift prediction</title><title>Physical chemistry chemical physics : PCCP</title><description>Graph neural networks (GNNs) have been proven effective in the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts of a molecule. Existing methods, despite their effectiveness, suffer from high space complexity and are therefore limited to relatively small molecules. In this work, we propose a scalable GNN for NMR chemical shift prediction. To reduce the space complexity, we sparsify the graph representation of a molecule by regarding only heavy atoms as nodes and their chemical bonds as edges. To better learn from the sparsified graph representation, we improve the message passing and readout functions in the GNN. For the message passing function, we adapt the attention mechanism and residual connection to better capture local information around each node. For the readout function, we use both node-level and graph-level embeddings as the local and global information to better predict node-level chemical shifts. Through the experimental investigation using
13
C and
1
H NMR datasets, we demonstrate that the proposed method yields higher prediction accuracy and is more scalable to large molecules having many heavy atoms.
We present a scalable graph neural network (GNN) with improved message passing and readout functions for the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts.</description><subject>Chemical bonds</subject><subject>Chemical equilibrium</subject><subject>Complexity</subject><subject>Graph neural networks</subject><subject>Graph representations</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Message passing</subject><subject>Neural networks</subject><subject>NMR</subject><subject>Nodes</subject><subject>Nuclear magnetic resonance</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0M1LwzAYBvAgCs7pxbtQ8CJCNW8-muQkMnUK8wM_ziXNkq2za2rSIv73dk4meHrew4-HlwehQ8BngKk6nxLTYMYZmW2hAbCMpgpLtr25RbaL9mJcYIyBAx2gixejK11UNpkF3cyT2nZBV320nz68J86H5OH-OTFzuyx7mcR56dqkCXZamrb09T7acbqK9uA3h-jt5vp1dJtOHsd3o8tJaghjbSoyYh13lChJxZS5ghhWEK0MdpabwmVC8oK7DIDKjGFRgASuDaMgjQAm6RCdrHub4D86G9t8WUZjq0rX1ncxJ4IC5pwr1dPjf3Thu1D3360UVZIT4L06XSsTfIzBurwJ5VKHrxxwvtoyvyKjp58txz0-WuMQzcb9bU2_ARbabmk</recordid><startdate>20221109</startdate><enddate>20221109</enddate><creator>Han, Jongmin</creator><creator>Kang, Hyungu</creator><creator>Kang, Seokho</creator><creator>Kwon, Youngchun</creator><creator>Lee, Dongseon</creator><creator>Choi, Youn-Suk</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7911-3670</orcidid><orcidid>https://orcid.org/0000-0002-0803-5588</orcidid><orcidid>https://orcid.org/0000-0002-0960-0294</orcidid><orcidid>https://orcid.org/0000-0001-7119-8788</orcidid><orcidid>https://orcid.org/0000-0003-0800-5925</orcidid><orcidid>https://orcid.org/0000-0002-9355-7400</orcidid></search><sort><creationdate>20221109</creationdate><title>Scalable graph neural network for NMR chemical shift prediction</title><author>Han, Jongmin ; Kang, Hyungu ; Kang, Seokho ; Kwon, Youngchun ; Lee, Dongseon ; Choi, Youn-Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-762ef5f329837d4fb2c4b2a9c0fe5cbf6785b5f611386407b1815ac4318c71483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical bonds</topic><topic>Chemical equilibrium</topic><topic>Complexity</topic><topic>Graph neural networks</topic><topic>Graph representations</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Message passing</topic><topic>Neural networks</topic><topic>NMR</topic><topic>Nodes</topic><topic>Nuclear magnetic resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Jongmin</creatorcontrib><creatorcontrib>Kang, Hyungu</creatorcontrib><creatorcontrib>Kang, Seokho</creatorcontrib><creatorcontrib>Kwon, Youngchun</creatorcontrib><creatorcontrib>Lee, Dongseon</creatorcontrib><creatorcontrib>Choi, Youn-Suk</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Jongmin</au><au>Kang, Hyungu</au><au>Kang, Seokho</au><au>Kwon, Youngchun</au><au>Lee, Dongseon</au><au>Choi, Youn-Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable graph neural network for NMR chemical shift prediction</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-11-09</date><risdate>2022</risdate><volume>24</volume><issue>43</issue><spage>2687</spage><epage>26878</epage><pages>2687-26878</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Graph neural networks (GNNs) have been proven effective in the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts of a molecule. Existing methods, despite their effectiveness, suffer from high space complexity and are therefore limited to relatively small molecules. In this work, we propose a scalable GNN for NMR chemical shift prediction. To reduce the space complexity, we sparsify the graph representation of a molecule by regarding only heavy atoms as nodes and their chemical bonds as edges. To better learn from the sparsified graph representation, we improve the message passing and readout functions in the GNN. For the message passing function, we adapt the attention mechanism and residual connection to better capture local information around each node. For the readout function, we use both node-level and graph-level embeddings as the local and global information to better predict node-level chemical shifts. Through the experimental investigation using
13
C and
1
H NMR datasets, we demonstrate that the proposed method yields higher prediction accuracy and is more scalable to large molecules having many heavy atoms.
We present a scalable graph neural network (GNN) with improved message passing and readout functions for the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2cp04542g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7911-3670</orcidid><orcidid>https://orcid.org/0000-0002-0803-5588</orcidid><orcidid>https://orcid.org/0000-0002-0960-0294</orcidid><orcidid>https://orcid.org/0000-0001-7119-8788</orcidid><orcidid>https://orcid.org/0000-0003-0800-5925</orcidid><orcidid>https://orcid.org/0000-0002-9355-7400</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2022-11, Vol.24 (43), p.2687-26878 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_rsc_primary_d2cp04542g |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Chemical bonds Chemical equilibrium Complexity Graph neural networks Graph representations Graph theory Graphical representations Message passing Neural networks NMR Nodes Nuclear magnetic resonance |
title | Scalable graph neural network for NMR chemical shift prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20graph%20neural%20network%20for%20NMR%20chemical%20shift%20prediction&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Han,%20Jongmin&rft.date=2022-11-09&rft.volume=24&rft.issue=43&rft.spage=2687&rft.epage=26878&rft.pages=2687-26878&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp04542g&rft_dat=%3Cproquest_rsc_p%3E2731055599%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733985215&rft_id=info:pmid/&rfr_iscdi=true |