Scalable graph neural network for NMR chemical shift prediction

Graph neural networks (GNNs) have been proven effective in the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts of a molecule. Existing methods, despite their effectiveness, suffer from high space complexity and are therefore limited to relatively small molecules. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-11, Vol.24 (43), p.2687-26878
Hauptverfasser: Han, Jongmin, Kang, Hyungu, Kang, Seokho, Kwon, Youngchun, Lee, Dongseon, Choi, Youn-Suk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26878
container_issue 43
container_start_page 2687
container_title Physical chemistry chemical physics : PCCP
container_volume 24
creator Han, Jongmin
Kang, Hyungu
Kang, Seokho
Kwon, Youngchun
Lee, Dongseon
Choi, Youn-Suk
description Graph neural networks (GNNs) have been proven effective in the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts of a molecule. Existing methods, despite their effectiveness, suffer from high space complexity and are therefore limited to relatively small molecules. In this work, we propose a scalable GNN for NMR chemical shift prediction. To reduce the space complexity, we sparsify the graph representation of a molecule by regarding only heavy atoms as nodes and their chemical bonds as edges. To better learn from the sparsified graph representation, we improve the message passing and readout functions in the GNN. For the message passing function, we adapt the attention mechanism and residual connection to better capture local information around each node. For the readout function, we use both node-level and graph-level embeddings as the local and global information to better predict node-level chemical shifts. Through the experimental investigation using 13 C and 1 H NMR datasets, we demonstrate that the proposed method yields higher prediction accuracy and is more scalable to large molecules having many heavy atoms. We present a scalable graph neural network (GNN) with improved message passing and readout functions for the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts.
doi_str_mv 10.1039/d2cp04542g
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d2cp04542g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731055599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-762ef5f329837d4fb2c4b2a9c0fe5cbf6785b5f611386407b1815ac4318c71483</originalsourceid><addsrcrecordid>eNpd0M1LwzAYBvAgCs7pxbtQ8CJCNW8-muQkMnUK8wM_ziXNkq2za2rSIv73dk4meHrew4-HlwehQ8BngKk6nxLTYMYZmW2hAbCMpgpLtr25RbaL9mJcYIyBAx2gixejK11UNpkF3cyT2nZBV320nz68J86H5OH-OTFzuyx7mcR56dqkCXZamrb09T7acbqK9uA3h-jt5vp1dJtOHsd3o8tJaghjbSoyYh13lChJxZS5ghhWEK0MdpabwmVC8oK7DIDKjGFRgASuDaMgjQAm6RCdrHub4D86G9t8WUZjq0rX1ncxJ4IC5pwr1dPjf3Thu1D3360UVZIT4L06XSsTfIzBurwJ5VKHrxxwvtoyvyKjp58txz0-WuMQzcb9bU2_ARbabmk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733985215</pqid></control><display><type>article</type><title>Scalable graph neural network for NMR chemical shift prediction</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Han, Jongmin ; Kang, Hyungu ; Kang, Seokho ; Kwon, Youngchun ; Lee, Dongseon ; Choi, Youn-Suk</creator><creatorcontrib>Han, Jongmin ; Kang, Hyungu ; Kang, Seokho ; Kwon, Youngchun ; Lee, Dongseon ; Choi, Youn-Suk</creatorcontrib><description>Graph neural networks (GNNs) have been proven effective in the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts of a molecule. Existing methods, despite their effectiveness, suffer from high space complexity and are therefore limited to relatively small molecules. In this work, we propose a scalable GNN for NMR chemical shift prediction. To reduce the space complexity, we sparsify the graph representation of a molecule by regarding only heavy atoms as nodes and their chemical bonds as edges. To better learn from the sparsified graph representation, we improve the message passing and readout functions in the GNN. For the message passing function, we adapt the attention mechanism and residual connection to better capture local information around each node. For the readout function, we use both node-level and graph-level embeddings as the local and global information to better predict node-level chemical shifts. Through the experimental investigation using 13 C and 1 H NMR datasets, we demonstrate that the proposed method yields higher prediction accuracy and is more scalable to large molecules having many heavy atoms. We present a scalable graph neural network (GNN) with improved message passing and readout functions for the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp04542g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical bonds ; Chemical equilibrium ; Complexity ; Graph neural networks ; Graph representations ; Graph theory ; Graphical representations ; Message passing ; Neural networks ; NMR ; Nodes ; Nuclear magnetic resonance</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-11, Vol.24 (43), p.2687-26878</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c244t-762ef5f329837d4fb2c4b2a9c0fe5cbf6785b5f611386407b1815ac4318c71483</citedby><cites>FETCH-LOGICAL-c244t-762ef5f329837d4fb2c4b2a9c0fe5cbf6785b5f611386407b1815ac4318c71483</cites><orcidid>0000-0001-7911-3670 ; 0000-0002-0803-5588 ; 0000-0002-0960-0294 ; 0000-0001-7119-8788 ; 0000-0003-0800-5925 ; 0000-0002-9355-7400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Han, Jongmin</creatorcontrib><creatorcontrib>Kang, Hyungu</creatorcontrib><creatorcontrib>Kang, Seokho</creatorcontrib><creatorcontrib>Kwon, Youngchun</creatorcontrib><creatorcontrib>Lee, Dongseon</creatorcontrib><creatorcontrib>Choi, Youn-Suk</creatorcontrib><title>Scalable graph neural network for NMR chemical shift prediction</title><title>Physical chemistry chemical physics : PCCP</title><description>Graph neural networks (GNNs) have been proven effective in the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts of a molecule. Existing methods, despite their effectiveness, suffer from high space complexity and are therefore limited to relatively small molecules. In this work, we propose a scalable GNN for NMR chemical shift prediction. To reduce the space complexity, we sparsify the graph representation of a molecule by regarding only heavy atoms as nodes and their chemical bonds as edges. To better learn from the sparsified graph representation, we improve the message passing and readout functions in the GNN. For the message passing function, we adapt the attention mechanism and residual connection to better capture local information around each node. For the readout function, we use both node-level and graph-level embeddings as the local and global information to better predict node-level chemical shifts. Through the experimental investigation using 13 C and 1 H NMR datasets, we demonstrate that the proposed method yields higher prediction accuracy and is more scalable to large molecules having many heavy atoms. We present a scalable graph neural network (GNN) with improved message passing and readout functions for the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts.</description><subject>Chemical bonds</subject><subject>Chemical equilibrium</subject><subject>Complexity</subject><subject>Graph neural networks</subject><subject>Graph representations</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Message passing</subject><subject>Neural networks</subject><subject>NMR</subject><subject>Nodes</subject><subject>Nuclear magnetic resonance</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0M1LwzAYBvAgCs7pxbtQ8CJCNW8-muQkMnUK8wM_ziXNkq2za2rSIv73dk4meHrew4-HlwehQ8BngKk6nxLTYMYZmW2hAbCMpgpLtr25RbaL9mJcYIyBAx2gixejK11UNpkF3cyT2nZBV320nz68J86H5OH-OTFzuyx7mcR56dqkCXZamrb09T7acbqK9uA3h-jt5vp1dJtOHsd3o8tJaghjbSoyYh13lChJxZS5ghhWEK0MdpabwmVC8oK7DIDKjGFRgASuDaMgjQAm6RCdrHub4D86G9t8WUZjq0rX1ncxJ4IC5pwr1dPjf3Thu1D3360UVZIT4L06XSsTfIzBurwJ5VKHrxxwvtoyvyKjp58txz0-WuMQzcb9bU2_ARbabmk</recordid><startdate>20221109</startdate><enddate>20221109</enddate><creator>Han, Jongmin</creator><creator>Kang, Hyungu</creator><creator>Kang, Seokho</creator><creator>Kwon, Youngchun</creator><creator>Lee, Dongseon</creator><creator>Choi, Youn-Suk</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7911-3670</orcidid><orcidid>https://orcid.org/0000-0002-0803-5588</orcidid><orcidid>https://orcid.org/0000-0002-0960-0294</orcidid><orcidid>https://orcid.org/0000-0001-7119-8788</orcidid><orcidid>https://orcid.org/0000-0003-0800-5925</orcidid><orcidid>https://orcid.org/0000-0002-9355-7400</orcidid></search><sort><creationdate>20221109</creationdate><title>Scalable graph neural network for NMR chemical shift prediction</title><author>Han, Jongmin ; Kang, Hyungu ; Kang, Seokho ; Kwon, Youngchun ; Lee, Dongseon ; Choi, Youn-Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-762ef5f329837d4fb2c4b2a9c0fe5cbf6785b5f611386407b1815ac4318c71483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical bonds</topic><topic>Chemical equilibrium</topic><topic>Complexity</topic><topic>Graph neural networks</topic><topic>Graph representations</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Message passing</topic><topic>Neural networks</topic><topic>NMR</topic><topic>Nodes</topic><topic>Nuclear magnetic resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Jongmin</creatorcontrib><creatorcontrib>Kang, Hyungu</creatorcontrib><creatorcontrib>Kang, Seokho</creatorcontrib><creatorcontrib>Kwon, Youngchun</creatorcontrib><creatorcontrib>Lee, Dongseon</creatorcontrib><creatorcontrib>Choi, Youn-Suk</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Jongmin</au><au>Kang, Hyungu</au><au>Kang, Seokho</au><au>Kwon, Youngchun</au><au>Lee, Dongseon</au><au>Choi, Youn-Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable graph neural network for NMR chemical shift prediction</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-11-09</date><risdate>2022</risdate><volume>24</volume><issue>43</issue><spage>2687</spage><epage>26878</epage><pages>2687-26878</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Graph neural networks (GNNs) have been proven effective in the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts of a molecule. Existing methods, despite their effectiveness, suffer from high space complexity and are therefore limited to relatively small molecules. In this work, we propose a scalable GNN for NMR chemical shift prediction. To reduce the space complexity, we sparsify the graph representation of a molecule by regarding only heavy atoms as nodes and their chemical bonds as edges. To better learn from the sparsified graph representation, we improve the message passing and readout functions in the GNN. For the message passing function, we adapt the attention mechanism and residual connection to better capture local information around each node. For the readout function, we use both node-level and graph-level embeddings as the local and global information to better predict node-level chemical shifts. Through the experimental investigation using 13 C and 1 H NMR datasets, we demonstrate that the proposed method yields higher prediction accuracy and is more scalable to large molecules having many heavy atoms. We present a scalable graph neural network (GNN) with improved message passing and readout functions for the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2cp04542g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7911-3670</orcidid><orcidid>https://orcid.org/0000-0002-0803-5588</orcidid><orcidid>https://orcid.org/0000-0002-0960-0294</orcidid><orcidid>https://orcid.org/0000-0001-7119-8788</orcidid><orcidid>https://orcid.org/0000-0003-0800-5925</orcidid><orcidid>https://orcid.org/0000-0002-9355-7400</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2022-11, Vol.24 (43), p.2687-26878
issn 1463-9076
1463-9084
language eng
recordid cdi_rsc_primary_d2cp04542g
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chemical bonds
Chemical equilibrium
Complexity
Graph neural networks
Graph representations
Graph theory
Graphical representations
Message passing
Neural networks
NMR
Nodes
Nuclear magnetic resonance
title Scalable graph neural network for NMR chemical shift prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20graph%20neural%20network%20for%20NMR%20chemical%20shift%20prediction&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Han,%20Jongmin&rft.date=2022-11-09&rft.volume=24&rft.issue=43&rft.spage=2687&rft.epage=26878&rft.pages=2687-26878&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp04542g&rft_dat=%3Cproquest_rsc_p%3E2731055599%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733985215&rft_id=info:pmid/&rfr_iscdi=true