P spin-lattice and singlet order relaxation mechanisms in pyrophosphate studied by isotopic substitution, field shuttling NMR, and molecular dynamics simulation

Nuclear spin relaxation mechanisms are often difficult to isolate and identify, especially in molecules with internal flexibility. Here we combine experimental work with computation in order to determine the major mechanisms responsible for 31 P spin-lattice and singlet order (SO) relaxation in pyro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-10, Vol.24 (39), p.24238-24245
Hauptverfasser: Korenchan, David E, Lu, Jiaqi, Sabba, Mohamed, Dagys, Laurynas, Brown, Lynda J, Levitt, Malcolm H, Jerschow, Alexej
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24245
container_issue 39
container_start_page 24238
container_title Physical chemistry chemical physics : PCCP
container_volume 24
creator Korenchan, David E
Lu, Jiaqi
Sabba, Mohamed
Dagys, Laurynas
Brown, Lynda J
Levitt, Malcolm H
Jerschow, Alexej
description Nuclear spin relaxation mechanisms are often difficult to isolate and identify, especially in molecules with internal flexibility. Here we combine experimental work with computation in order to determine the major mechanisms responsible for 31 P spin-lattice and singlet order (SO) relaxation in pyrophosphate, a physiologically relevant molecule. Using field-shuttling relaxation measurements (from 2 μT to 9.4 T) and rates calculated from molecular dynamics (MD) trajectories, we identified chemical shift anisotropy (CSA) and spin-rotation as the major mechanisms, with minor contributions from intra- and intermolecular coupling. The significant spin-rotation interaction is a consequence of the relatively rapid rotation of the -PO 3 2− entities around the bridging P-O bonds, and is treated by a combination of MD simulations and quantum chemistry calculations. Spin-lattice relaxation was predicted well without adjustable parameters, and for SO relaxation one parameter was extracted from the comparison between experiment and computation (a correlation coefficient between the rotational motion of the groups). 31 P NMR spectroscopy of unsymmetrically 18 O labeled pyrophosphate and molecular dynamics simulations reveal a low-field limit to longitudinal and singlet order relaxation, arising from spin rotation of the phosphate moieties.
doi_str_mv 10.1039/d2cp03801c
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d2cp03801c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d2cp03801c</sourcerecordid><originalsourceid>FETCH-LOGICAL-r92t-c4dd6a3e88083ff21354ddf9699616194b26b65c6444663865f82c797d0dad63</originalsourceid><addsrcrecordid>eNpFUEtLxDAYDKLgunrxLnw_YKtJ06bJURZfsD5Q70uapDaSNiVJwf4bf6pdFT3NMDAPBqFTgs8JpuJC52rAlGOi9tCCFIxmAvNi_49X7BAdxfiOMSYloQv0-QRxsH3mZEpWGZC9hmj7N2cS-KBNgGCc_JDJ-h46o1rZ29hFsD0MU_BD6-PQymQgplFbo6GewEaf_GAVxLGOyaZxZ15BY42bw9sxJTc3wMP98-q7r_POqNHJAHrqZWdVnCd0s7DzHaODRrpoTn5xiV6ur17Xt9nm8eZufbnJgshTpgqtmaSGc8xp0-SElrPSCCYEI4yIos5ZzUrFiqJgjHJWNjxXlag01lIzukRnP6khqu0QbCfDtP0_k34Bq95smQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>P spin-lattice and singlet order relaxation mechanisms in pyrophosphate studied by isotopic substitution, field shuttling NMR, and molecular dynamics simulation</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Korenchan, David E ; Lu, Jiaqi ; Sabba, Mohamed ; Dagys, Laurynas ; Brown, Lynda J ; Levitt, Malcolm H ; Jerschow, Alexej</creator><creatorcontrib>Korenchan, David E ; Lu, Jiaqi ; Sabba, Mohamed ; Dagys, Laurynas ; Brown, Lynda J ; Levitt, Malcolm H ; Jerschow, Alexej</creatorcontrib><description>Nuclear spin relaxation mechanisms are often difficult to isolate and identify, especially in molecules with internal flexibility. Here we combine experimental work with computation in order to determine the major mechanisms responsible for 31 P spin-lattice and singlet order (SO) relaxation in pyrophosphate, a physiologically relevant molecule. Using field-shuttling relaxation measurements (from 2 μT to 9.4 T) and rates calculated from molecular dynamics (MD) trajectories, we identified chemical shift anisotropy (CSA) and spin-rotation as the major mechanisms, with minor contributions from intra- and intermolecular coupling. The significant spin-rotation interaction is a consequence of the relatively rapid rotation of the -PO 3 2− entities around the bridging P-O bonds, and is treated by a combination of MD simulations and quantum chemistry calculations. Spin-lattice relaxation was predicted well without adjustable parameters, and for SO relaxation one parameter was extracted from the comparison between experiment and computation (a correlation coefficient between the rotational motion of the groups). 31 P NMR spectroscopy of unsymmetrically 18 O labeled pyrophosphate and molecular dynamics simulations reveal a low-field limit to longitudinal and singlet order relaxation, arising from spin rotation of the phosphate moieties.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp03801c</identifier><language>eng</language><ispartof>Physical chemistry chemical physics : PCCP, 2022-10, Vol.24 (39), p.24238-24245</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Korenchan, David E</creatorcontrib><creatorcontrib>Lu, Jiaqi</creatorcontrib><creatorcontrib>Sabba, Mohamed</creatorcontrib><creatorcontrib>Dagys, Laurynas</creatorcontrib><creatorcontrib>Brown, Lynda J</creatorcontrib><creatorcontrib>Levitt, Malcolm H</creatorcontrib><creatorcontrib>Jerschow, Alexej</creatorcontrib><title>P spin-lattice and singlet order relaxation mechanisms in pyrophosphate studied by isotopic substitution, field shuttling NMR, and molecular dynamics simulation</title><title>Physical chemistry chemical physics : PCCP</title><description>Nuclear spin relaxation mechanisms are often difficult to isolate and identify, especially in molecules with internal flexibility. Here we combine experimental work with computation in order to determine the major mechanisms responsible for 31 P spin-lattice and singlet order (SO) relaxation in pyrophosphate, a physiologically relevant molecule. Using field-shuttling relaxation measurements (from 2 μT to 9.4 T) and rates calculated from molecular dynamics (MD) trajectories, we identified chemical shift anisotropy (CSA) and spin-rotation as the major mechanisms, with minor contributions from intra- and intermolecular coupling. The significant spin-rotation interaction is a consequence of the relatively rapid rotation of the -PO 3 2− entities around the bridging P-O bonds, and is treated by a combination of MD simulations and quantum chemistry calculations. Spin-lattice relaxation was predicted well without adjustable parameters, and for SO relaxation one parameter was extracted from the comparison between experiment and computation (a correlation coefficient between the rotational motion of the groups). 31 P NMR spectroscopy of unsymmetrically 18 O labeled pyrophosphate and molecular dynamics simulations reveal a low-field limit to longitudinal and singlet order relaxation, arising from spin rotation of the phosphate moieties.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFUEtLxDAYDKLgunrxLnw_YKtJ06bJURZfsD5Q70uapDaSNiVJwf4bf6pdFT3NMDAPBqFTgs8JpuJC52rAlGOi9tCCFIxmAvNi_49X7BAdxfiOMSYloQv0-QRxsH3mZEpWGZC9hmj7N2cS-KBNgGCc_JDJ-h46o1rZ29hFsD0MU_BD6-PQymQgplFbo6GewEaf_GAVxLGOyaZxZ15BY42bw9sxJTc3wMP98-q7r_POqNHJAHrqZWdVnCd0s7DzHaODRrpoTn5xiV6ur17Xt9nm8eZufbnJgshTpgqtmaSGc8xp0-SElrPSCCYEI4yIos5ZzUrFiqJgjHJWNjxXlag01lIzukRnP6khqu0QbCfDtP0_k34Bq95smQ</recordid><startdate>20221012</startdate><enddate>20221012</enddate><creator>Korenchan, David E</creator><creator>Lu, Jiaqi</creator><creator>Sabba, Mohamed</creator><creator>Dagys, Laurynas</creator><creator>Brown, Lynda J</creator><creator>Levitt, Malcolm H</creator><creator>Jerschow, Alexej</creator><scope/></search><sort><creationdate>20221012</creationdate><title>P spin-lattice and singlet order relaxation mechanisms in pyrophosphate studied by isotopic substitution, field shuttling NMR, and molecular dynamics simulation</title><author>Korenchan, David E ; Lu, Jiaqi ; Sabba, Mohamed ; Dagys, Laurynas ; Brown, Lynda J ; Levitt, Malcolm H ; Jerschow, Alexej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-r92t-c4dd6a3e88083ff21354ddf9699616194b26b65c6444663865f82c797d0dad63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korenchan, David E</creatorcontrib><creatorcontrib>Lu, Jiaqi</creatorcontrib><creatorcontrib>Sabba, Mohamed</creatorcontrib><creatorcontrib>Dagys, Laurynas</creatorcontrib><creatorcontrib>Brown, Lynda J</creatorcontrib><creatorcontrib>Levitt, Malcolm H</creatorcontrib><creatorcontrib>Jerschow, Alexej</creatorcontrib><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korenchan, David E</au><au>Lu, Jiaqi</au><au>Sabba, Mohamed</au><au>Dagys, Laurynas</au><au>Brown, Lynda J</au><au>Levitt, Malcolm H</au><au>Jerschow, Alexej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P spin-lattice and singlet order relaxation mechanisms in pyrophosphate studied by isotopic substitution, field shuttling NMR, and molecular dynamics simulation</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-10-12</date><risdate>2022</risdate><volume>24</volume><issue>39</issue><spage>24238</spage><epage>24245</epage><pages>24238-24245</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Nuclear spin relaxation mechanisms are often difficult to isolate and identify, especially in molecules with internal flexibility. Here we combine experimental work with computation in order to determine the major mechanisms responsible for 31 P spin-lattice and singlet order (SO) relaxation in pyrophosphate, a physiologically relevant molecule. Using field-shuttling relaxation measurements (from 2 μT to 9.4 T) and rates calculated from molecular dynamics (MD) trajectories, we identified chemical shift anisotropy (CSA) and spin-rotation as the major mechanisms, with minor contributions from intra- and intermolecular coupling. The significant spin-rotation interaction is a consequence of the relatively rapid rotation of the -PO 3 2− entities around the bridging P-O bonds, and is treated by a combination of MD simulations and quantum chemistry calculations. Spin-lattice relaxation was predicted well without adjustable parameters, and for SO relaxation one parameter was extracted from the comparison between experiment and computation (a correlation coefficient between the rotational motion of the groups). 31 P NMR spectroscopy of unsymmetrically 18 O labeled pyrophosphate and molecular dynamics simulations reveal a low-field limit to longitudinal and singlet order relaxation, arising from spin rotation of the phosphate moieties.</abstract><doi>10.1039/d2cp03801c</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2022-10, Vol.24 (39), p.24238-24245
issn 1463-9076
1463-9084
language eng
recordid cdi_rsc_primary_d2cp03801c
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title P spin-lattice and singlet order relaxation mechanisms in pyrophosphate studied by isotopic substitution, field shuttling NMR, and molecular dynamics simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P%20spin-lattice%20and%20singlet%20order%20relaxation%20mechanisms%20in%20pyrophosphate%20studied%20by%20isotopic%20substitution,%20field%20shuttling%20NMR,%20and%20molecular%20dynamics%20simulation&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Korenchan,%20David%20E&rft.date=2022-10-12&rft.volume=24&rft.issue=39&rft.spage=24238&rft.epage=24245&rft.pages=24238-24245&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp03801c&rft_dat=%3Crsc%3Ed2cp03801c%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true