A giant enhancement in the up-conversion luminescence and high temperature sensitivity of Bi doped ZnMoO:Er up-conversion phosphor

Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy. Herein, an effective enhancement in UC luminescence is achieved in the ZnMoO 4 :Er 3+ phosphor via Bi 3+ doping. UV-vis-NIR diffuse reflectance spectroscopy verifies the fact that the absorption at 980...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-12, Vol.24 (48), p.2999-29917
Hauptverfasser: Du, Shanshan, Liu, Fengyun, Cao, Huiying, Mi, Zhihao, Huang, Haihua
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29917
container_issue 48
container_start_page 2999
container_title Physical chemistry chemical physics : PCCP
container_volume 24
creator Du, Shanshan
Liu, Fengyun
Cao, Huiying
Mi, Zhihao
Huang, Haihua
description Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy. Herein, an effective enhancement in UC luminescence is achieved in the ZnMoO 4 :Er 3+ phosphor via Bi 3+ doping. UV-vis-NIR diffuse reflectance spectroscopy verifies the fact that the absorption at 980 nm is enhanced by the introduction of Bi 3+ . The physical mechanism is that Bi 3+ doping affects the transition probability between the f-levels of Er 3+ . Therefore, the green and red emission intensities are increased 82.4 and 37 times, respectively. The dependence of luminescence intensity on the power of Bi 3+ -doped ZnMoO 4 :Er 3+ combined with density functional theory (DFT) calculations also confirms the proposed energy transfer mechanism. Based on the excellent green emission, the 980 nm excited optical temperature sensing property of the synthesized sample is realized in a wide temperature range by monitoring the intensity of UC luminescence. The theoretically calculated absolute sensitivity of the optical temperature sensor was S A = 3.04% K −1 at 1253 K. This work paves a new way for enhancing UC luminescence and will arouse extensive interest in noncontact temperature-sensing applications. Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy.
doi_str_mv 10.1039/d2cp03284h
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d2cp03284h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d2cp03284h</sourcerecordid><originalsourceid>FETCH-rsc_primary_d2cp03284h3</originalsourceid><addsrcrecordid>eNqFjz9LA0EUxBdRMFGb9IH3BU53s2f-dVEiNmJjZROWvZfsC7m3y769QFo_uVeIQhqLYX4ww8AoNTL63mi7eGgmPmk7mdfhQg1MPbXVQs_ry1-eTa_VUGSvtTaPxg7U1wp25LgAcnDsscWeiaEEhC5VPvIRs1BkOHQtMYrHvgWOGwi0C1CwTZhd6TKCIAsVOlI5QdzCE0ETEzbwyW_xfbnOZ4MpROmVb9XV1h0E7378Ro1f1h_Pr1UWv0mZWpdPm79j9r_8G-y-U_E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A giant enhancement in the up-conversion luminescence and high temperature sensitivity of Bi doped ZnMoO:Er up-conversion phosphor</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Du, Shanshan ; Liu, Fengyun ; Cao, Huiying ; Mi, Zhihao ; Huang, Haihua</creator><creatorcontrib>Du, Shanshan ; Liu, Fengyun ; Cao, Huiying ; Mi, Zhihao ; Huang, Haihua</creatorcontrib><description>Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy. Herein, an effective enhancement in UC luminescence is achieved in the ZnMoO 4 :Er 3+ phosphor via Bi 3+ doping. UV-vis-NIR diffuse reflectance spectroscopy verifies the fact that the absorption at 980 nm is enhanced by the introduction of Bi 3+ . The physical mechanism is that Bi 3+ doping affects the transition probability between the f-levels of Er 3+ . Therefore, the green and red emission intensities are increased 82.4 and 37 times, respectively. The dependence of luminescence intensity on the power of Bi 3+ -doped ZnMoO 4 :Er 3+ combined with density functional theory (DFT) calculations also confirms the proposed energy transfer mechanism. Based on the excellent green emission, the 980 nm excited optical temperature sensing property of the synthesized sample is realized in a wide temperature range by monitoring the intensity of UC luminescence. The theoretically calculated absolute sensitivity of the optical temperature sensor was S A = 3.04% K −1 at 1253 K. This work paves a new way for enhancing UC luminescence and will arouse extensive interest in noncontact temperature-sensing applications. Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp03284h</identifier><ispartof>Physical chemistry chemical physics : PCCP, 2022-12, Vol.24 (48), p.2999-29917</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Du, Shanshan</creatorcontrib><creatorcontrib>Liu, Fengyun</creatorcontrib><creatorcontrib>Cao, Huiying</creatorcontrib><creatorcontrib>Mi, Zhihao</creatorcontrib><creatorcontrib>Huang, Haihua</creatorcontrib><title>A giant enhancement in the up-conversion luminescence and high temperature sensitivity of Bi doped ZnMoO:Er up-conversion phosphor</title><title>Physical chemistry chemical physics : PCCP</title><description>Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy. Herein, an effective enhancement in UC luminescence is achieved in the ZnMoO 4 :Er 3+ phosphor via Bi 3+ doping. UV-vis-NIR diffuse reflectance spectroscopy verifies the fact that the absorption at 980 nm is enhanced by the introduction of Bi 3+ . The physical mechanism is that Bi 3+ doping affects the transition probability between the f-levels of Er 3+ . Therefore, the green and red emission intensities are increased 82.4 and 37 times, respectively. The dependence of luminescence intensity on the power of Bi 3+ -doped ZnMoO 4 :Er 3+ combined with density functional theory (DFT) calculations also confirms the proposed energy transfer mechanism. Based on the excellent green emission, the 980 nm excited optical temperature sensing property of the synthesized sample is realized in a wide temperature range by monitoring the intensity of UC luminescence. The theoretically calculated absolute sensitivity of the optical temperature sensor was S A = 3.04% K −1 at 1253 K. This work paves a new way for enhancing UC luminescence and will arouse extensive interest in noncontact temperature-sensing applications. Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjz9LA0EUxBdRMFGb9IH3BU53s2f-dVEiNmJjZROWvZfsC7m3y769QFo_uVeIQhqLYX4ww8AoNTL63mi7eGgmPmk7mdfhQg1MPbXVQs_ry1-eTa_VUGSvtTaPxg7U1wp25LgAcnDsscWeiaEEhC5VPvIRs1BkOHQtMYrHvgWOGwi0C1CwTZhd6TKCIAsVOlI5QdzCE0ETEzbwyW_xfbnOZ4MpROmVb9XV1h0E7378Ro1f1h_Pr1UWv0mZWpdPm79j9r_8G-y-U_E</recordid><startdate>20221214</startdate><enddate>20221214</enddate><creator>Du, Shanshan</creator><creator>Liu, Fengyun</creator><creator>Cao, Huiying</creator><creator>Mi, Zhihao</creator><creator>Huang, Haihua</creator><scope/></search><sort><creationdate>20221214</creationdate><title>A giant enhancement in the up-conversion luminescence and high temperature sensitivity of Bi doped ZnMoO:Er up-conversion phosphor</title><author>Du, Shanshan ; Liu, Fengyun ; Cao, Huiying ; Mi, Zhihao ; Huang, Haihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d2cp03284h3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Shanshan</creatorcontrib><creatorcontrib>Liu, Fengyun</creatorcontrib><creatorcontrib>Cao, Huiying</creatorcontrib><creatorcontrib>Mi, Zhihao</creatorcontrib><creatorcontrib>Huang, Haihua</creatorcontrib><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Shanshan</au><au>Liu, Fengyun</au><au>Cao, Huiying</au><au>Mi, Zhihao</au><au>Huang, Haihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A giant enhancement in the up-conversion luminescence and high temperature sensitivity of Bi doped ZnMoO:Er up-conversion phosphor</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-12-14</date><risdate>2022</risdate><volume>24</volume><issue>48</issue><spage>2999</spage><epage>29917</epage><pages>2999-29917</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy. Herein, an effective enhancement in UC luminescence is achieved in the ZnMoO 4 :Er 3+ phosphor via Bi 3+ doping. UV-vis-NIR diffuse reflectance spectroscopy verifies the fact that the absorption at 980 nm is enhanced by the introduction of Bi 3+ . The physical mechanism is that Bi 3+ doping affects the transition probability between the f-levels of Er 3+ . Therefore, the green and red emission intensities are increased 82.4 and 37 times, respectively. The dependence of luminescence intensity on the power of Bi 3+ -doped ZnMoO 4 :Er 3+ combined with density functional theory (DFT) calculations also confirms the proposed energy transfer mechanism. Based on the excellent green emission, the 980 nm excited optical temperature sensing property of the synthesized sample is realized in a wide temperature range by monitoring the intensity of UC luminescence. The theoretically calculated absolute sensitivity of the optical temperature sensor was S A = 3.04% K −1 at 1253 K. This work paves a new way for enhancing UC luminescence and will arouse extensive interest in noncontact temperature-sensing applications. Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy.</abstract><doi>10.1039/d2cp03284h</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2022-12, Vol.24 (48), p.2999-29917
issn 1463-9076
1463-9084
language
recordid cdi_rsc_primary_d2cp03284h
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title A giant enhancement in the up-conversion luminescence and high temperature sensitivity of Bi doped ZnMoO:Er up-conversion phosphor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20giant%20enhancement%20in%20the%20up-conversion%20luminescence%20and%20high%20temperature%20sensitivity%20of%20Bi%20doped%20ZnMoO:Er%20up-conversion%20phosphor&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Du,%20Shanshan&rft.date=2022-12-14&rft.volume=24&rft.issue=48&rft.spage=2999&rft.epage=29917&rft.pages=2999-29917&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp03284h&rft_dat=%3Crsc%3Ed2cp03284h%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true