A giant enhancement in the up-conversion luminescence and high temperature sensitivity of Bi doped ZnMoO:Er up-conversion phosphor
Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy. Herein, an effective enhancement in UC luminescence is achieved in the ZnMoO 4 :Er 3+ phosphor via Bi 3+ doping. UV-vis-NIR diffuse reflectance spectroscopy verifies the fact that the absorption at 980...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2022-12, Vol.24 (48), p.2999-29917 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29917 |
---|---|
container_issue | 48 |
container_start_page | 2999 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 24 |
creator | Du, Shanshan Liu, Fengyun Cao, Huiying Mi, Zhihao Huang, Haihua |
description | Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy. Herein, an effective enhancement in UC luminescence is achieved in the ZnMoO
4
:Er
3+
phosphor
via
Bi
3+
doping. UV-vis-NIR diffuse reflectance spectroscopy verifies the fact that the absorption at 980 nm is enhanced by the introduction of Bi
3+
. The physical mechanism is that Bi
3+
doping affects the transition probability between the f-levels of Er
3+
. Therefore, the green and red emission intensities are increased 82.4 and 37 times, respectively. The dependence of luminescence intensity on the power of Bi
3+
-doped ZnMoO
4
:Er
3+
combined with density functional theory (DFT) calculations also confirms the proposed energy transfer mechanism. Based on the excellent green emission, the 980 nm excited optical temperature sensing property of the synthesized sample is realized in a wide temperature range by monitoring the intensity of UC luminescence. The theoretically calculated absolute sensitivity of the optical temperature sensor was
S
A
= 3.04% K
−1
at 1253 K. This work paves a new way for enhancing UC luminescence and will arouse extensive interest in noncontact temperature-sensing applications.
Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy. |
doi_str_mv | 10.1039/d2cp03284h |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d2cp03284h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d2cp03284h</sourcerecordid><originalsourceid>FETCH-rsc_primary_d2cp03284h3</originalsourceid><addsrcrecordid>eNqFjz9LA0EUxBdRMFGb9IH3BU53s2f-dVEiNmJjZROWvZfsC7m3y769QFo_uVeIQhqLYX4ww8AoNTL63mi7eGgmPmk7mdfhQg1MPbXVQs_ry1-eTa_VUGSvtTaPxg7U1wp25LgAcnDsscWeiaEEhC5VPvIRs1BkOHQtMYrHvgWOGwi0C1CwTZhd6TKCIAsVOlI5QdzCE0ETEzbwyW_xfbnOZ4MpROmVb9XV1h0E7378Ro1f1h_Pr1UWv0mZWpdPm79j9r_8G-y-U_E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A giant enhancement in the up-conversion luminescence and high temperature sensitivity of Bi doped ZnMoO:Er up-conversion phosphor</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Du, Shanshan ; Liu, Fengyun ; Cao, Huiying ; Mi, Zhihao ; Huang, Haihua</creator><creatorcontrib>Du, Shanshan ; Liu, Fengyun ; Cao, Huiying ; Mi, Zhihao ; Huang, Haihua</creatorcontrib><description>Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy. Herein, an effective enhancement in UC luminescence is achieved in the ZnMoO
4
:Er
3+
phosphor
via
Bi
3+
doping. UV-vis-NIR diffuse reflectance spectroscopy verifies the fact that the absorption at 980 nm is enhanced by the introduction of Bi
3+
. The physical mechanism is that Bi
3+
doping affects the transition probability between the f-levels of Er
3+
. Therefore, the green and red emission intensities are increased 82.4 and 37 times, respectively. The dependence of luminescence intensity on the power of Bi
3+
-doped ZnMoO
4
:Er
3+
combined with density functional theory (DFT) calculations also confirms the proposed energy transfer mechanism. Based on the excellent green emission, the 980 nm excited optical temperature sensing property of the synthesized sample is realized in a wide temperature range by monitoring the intensity of UC luminescence. The theoretically calculated absolute sensitivity of the optical temperature sensor was
S
A
= 3.04% K
−1
at 1253 K. This work paves a new way for enhancing UC luminescence and will arouse extensive interest in noncontact temperature-sensing applications.
Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp03284h</identifier><ispartof>Physical chemistry chemical physics : PCCP, 2022-12, Vol.24 (48), p.2999-29917</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Du, Shanshan</creatorcontrib><creatorcontrib>Liu, Fengyun</creatorcontrib><creatorcontrib>Cao, Huiying</creatorcontrib><creatorcontrib>Mi, Zhihao</creatorcontrib><creatorcontrib>Huang, Haihua</creatorcontrib><title>A giant enhancement in the up-conversion luminescence and high temperature sensitivity of Bi doped ZnMoO:Er up-conversion phosphor</title><title>Physical chemistry chemical physics : PCCP</title><description>Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy. Herein, an effective enhancement in UC luminescence is achieved in the ZnMoO
4
:Er
3+
phosphor
via
Bi
3+
doping. UV-vis-NIR diffuse reflectance spectroscopy verifies the fact that the absorption at 980 nm is enhanced by the introduction of Bi
3+
. The physical mechanism is that Bi
3+
doping affects the transition probability between the f-levels of Er
3+
. Therefore, the green and red emission intensities are increased 82.4 and 37 times, respectively. The dependence of luminescence intensity on the power of Bi
3+
-doped ZnMoO
4
:Er
3+
combined with density functional theory (DFT) calculations also confirms the proposed energy transfer mechanism. Based on the excellent green emission, the 980 nm excited optical temperature sensing property of the synthesized sample is realized in a wide temperature range by monitoring the intensity of UC luminescence. The theoretically calculated absolute sensitivity of the optical temperature sensor was
S
A
= 3.04% K
−1
at 1253 K. This work paves a new way for enhancing UC luminescence and will arouse extensive interest in noncontact temperature-sensing applications.
Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjz9LA0EUxBdRMFGb9IH3BU53s2f-dVEiNmJjZROWvZfsC7m3y769QFo_uVeIQhqLYX4ww8AoNTL63mi7eGgmPmk7mdfhQg1MPbXVQs_ry1-eTa_VUGSvtTaPxg7U1wp25LgAcnDsscWeiaEEhC5VPvIRs1BkOHQtMYrHvgWOGwi0C1CwTZhd6TKCIAsVOlI5QdzCE0ETEzbwyW_xfbnOZ4MpROmVb9XV1h0E7378Ro1f1h_Pr1UWv0mZWpdPm79j9r_8G-y-U_E</recordid><startdate>20221214</startdate><enddate>20221214</enddate><creator>Du, Shanshan</creator><creator>Liu, Fengyun</creator><creator>Cao, Huiying</creator><creator>Mi, Zhihao</creator><creator>Huang, Haihua</creator><scope/></search><sort><creationdate>20221214</creationdate><title>A giant enhancement in the up-conversion luminescence and high temperature sensitivity of Bi doped ZnMoO:Er up-conversion phosphor</title><author>Du, Shanshan ; Liu, Fengyun ; Cao, Huiying ; Mi, Zhihao ; Huang, Haihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d2cp03284h3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Shanshan</creatorcontrib><creatorcontrib>Liu, Fengyun</creatorcontrib><creatorcontrib>Cao, Huiying</creatorcontrib><creatorcontrib>Mi, Zhihao</creatorcontrib><creatorcontrib>Huang, Haihua</creatorcontrib><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Shanshan</au><au>Liu, Fengyun</au><au>Cao, Huiying</au><au>Mi, Zhihao</au><au>Huang, Haihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A giant enhancement in the up-conversion luminescence and high temperature sensitivity of Bi doped ZnMoO:Er up-conversion phosphor</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-12-14</date><risdate>2022</risdate><volume>24</volume><issue>48</issue><spage>2999</spage><epage>29917</epage><pages>2999-29917</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy. Herein, an effective enhancement in UC luminescence is achieved in the ZnMoO
4
:Er
3+
phosphor
via
Bi
3+
doping. UV-vis-NIR diffuse reflectance spectroscopy verifies the fact that the absorption at 980 nm is enhanced by the introduction of Bi
3+
. The physical mechanism is that Bi
3+
doping affects the transition probability between the f-levels of Er
3+
. Therefore, the green and red emission intensities are increased 82.4 and 37 times, respectively. The dependence of luminescence intensity on the power of Bi
3+
-doped ZnMoO
4
:Er
3+
combined with density functional theory (DFT) calculations also confirms the proposed energy transfer mechanism. Based on the excellent green emission, the 980 nm excited optical temperature sensing property of the synthesized sample is realized in a wide temperature range by monitoring the intensity of UC luminescence. The theoretically calculated absolute sensitivity of the optical temperature sensor was
S
A
= 3.04% K
−1
at 1253 K. This work paves a new way for enhancing UC luminescence and will arouse extensive interest in noncontact temperature-sensing applications.
Luminescence intensity is a critical factor for upconversion (UC) oxides with high phonon energy.</abstract><doi>10.1039/d2cp03284h</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2022-12, Vol.24 (48), p.2999-29917 |
issn | 1463-9076 1463-9084 |
language | |
recordid | cdi_rsc_primary_d2cp03284h |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | A giant enhancement in the up-conversion luminescence and high temperature sensitivity of Bi doped ZnMoO:Er up-conversion phosphor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20giant%20enhancement%20in%20the%20up-conversion%20luminescence%20and%20high%20temperature%20sensitivity%20of%20Bi%20doped%20ZnMoO:Er%20up-conversion%20phosphor&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Du,%20Shanshan&rft.date=2022-12-14&rft.volume=24&rft.issue=48&rft.spage=2999&rft.epage=29917&rft.pages=2999-29917&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp03284h&rft_dat=%3Crsc%3Ed2cp03284h%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |