Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration

Implant associated infections (IAI) and poor osseointegration are the two major causes for titanium implant failure, leading to subsequent financial burden and physical sufferings. Therefore, advanced implants with excellent anti-infection and osseointegration performance are needed. In this work, m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2021-10, Vol.9 (4), p.851-8511
Hauptverfasser: Han, Mingyue, Dong, Zhiyun, Li, Jianshu, Luo, Jun, Yin, Derong, Sun, Lizhong, Tao, Siying, Zhen, Li, Yang, Jiaojiao, Li, Jiyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8511
container_issue 4
container_start_page 851
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 9
creator Han, Mingyue
Dong, Zhiyun
Li, Jianshu
Luo, Jun
Yin, Derong
Sun, Lizhong
Tao, Siying
Zhen, Li
Yang, Jiaojiao
Li, Jiyao
description Implant associated infections (IAI) and poor osseointegration are the two major causes for titanium implant failure, leading to subsequent financial burden and physical sufferings. Therefore, advanced implants with excellent anti-infection and osseointegration performance are needed. In this work, mussel-inspired tannic acid (TA) mediated layer-by-layer (LbL) self-assembly was used for fabricating bonded polyethylene glycol (PEG) and 8DSS (8 repeating units of aspartate-serine-serine) coatings (Ti/8DSS/PEG) on the surface of titanium implants. The coating is designed to simultaneously reduce bacterial adhesion through the super-hydrophilic effect of PEG and promote osseointegration through the effective biomineralization of 8DSS. The obtained Ti/8DSS/PEG implant exhibits superior anti-biofouling capabilities (anti-protein adhesion and anti-bacterial adhesion against S. aureus and E. coli ) and excellent biocompatibility. Meanwhile, the Ti/8DSS/PEG implant accelerates osteoblast differentiation and presents significantly better osteogenic ability than bare titanium implants in vivo . This mussel-inspired TA mediated LbL self-assembly method is expected to provide a multifunctional and robust platform for surface engineering in bone repair. A facile and flexible strategy was presented for implant modification via tannic acid mediated layer-by-layer self-assembly coatings of polyethylene glycol and peptides. The obtained implants exhibit synergistic anti-fouling and osteogenic performances.
doi_str_mv 10.1039/d1tb01607e
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1tb01607e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575836486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-a05e2cae6004f27127597d99e1691cb54e0a2ad8424d1334cbd7241cd7dcaa4e3</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVoSEKSS-8thl5KwYk-LfnYpGlaSMglgd6MLI0XBVvaauzC_vfRdpMtVBdp9H48ZuYR8p7RC0ZFe-nZ3FPWUA0H5IRTRWutmHm3f9Nfx-Qc8ZmWY1hjhDwix0IqJbQwJ-TP_YIIYx0irkMGX5ViqG35m_pxU0FchQiwFcK0Hm2cK5fsHOIKqyHlCjcR8irgHFxVxFB8BnBzSLGUvko4Q1pBBAxYWedghGy36hk5HOyIcP56n5Kn7zeP1z_qu4fbn9df72ontJlrSxVwZ6GhVA5cM65Vq33bAmta5nolgVpuvZFceiaEdL3XXDLntXfWShCn5PPOd53T7wVw7qaApY0yCaQFO660MqKRpinop__Q57TkWLorlCnmlPEt9WVHuZwQMwzdOofJ5k3HaLcNpPvGHq_-BnJT4I-vlks_gd-jb-svwIcdkNHt1X-Jihf2EpG1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583340126</pqid></control><display><type>article</type><title>Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Han, Mingyue ; Dong, Zhiyun ; Li, Jianshu ; Luo, Jun ; Yin, Derong ; Sun, Lizhong ; Tao, Siying ; Zhen, Li ; Yang, Jiaojiao ; Li, Jiyao</creator><creatorcontrib>Han, Mingyue ; Dong, Zhiyun ; Li, Jianshu ; Luo, Jun ; Yin, Derong ; Sun, Lizhong ; Tao, Siying ; Zhen, Li ; Yang, Jiaojiao ; Li, Jiyao</creatorcontrib><description>Implant associated infections (IAI) and poor osseointegration are the two major causes for titanium implant failure, leading to subsequent financial burden and physical sufferings. Therefore, advanced implants with excellent anti-infection and osseointegration performance are needed. In this work, mussel-inspired tannic acid (TA) mediated layer-by-layer (LbL) self-assembly was used for fabricating bonded polyethylene glycol (PEG) and 8DSS (8 repeating units of aspartate-serine-serine) coatings (Ti/8DSS/PEG) on the surface of titanium implants. The coating is designed to simultaneously reduce bacterial adhesion through the super-hydrophilic effect of PEG and promote osseointegration through the effective biomineralization of 8DSS. The obtained Ti/8DSS/PEG implant exhibits superior anti-biofouling capabilities (anti-protein adhesion and anti-bacterial adhesion against S. aureus and E. coli ) and excellent biocompatibility. Meanwhile, the Ti/8DSS/PEG implant accelerates osteoblast differentiation and presents significantly better osteogenic ability than bare titanium implants in vivo . This mussel-inspired TA mediated LbL self-assembly method is expected to provide a multifunctional and robust platform for surface engineering in bone repair. A facile and flexible strategy was presented for implant modification via tannic acid mediated layer-by-layer self-assembly coatings of polyethylene glycol and peptides. The obtained implants exhibit synergistic anti-fouling and osteogenic performances.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d1tb01607e</identifier><identifier>PMID: 34553738</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adhesion ; Animals ; Anti-Infective Agents - chemistry ; Antiinfectives and antibacterials ; Biocompatibility ; Biocompatible Materials - chemistry ; Biofouling ; Biomedical materials ; Bivalvia ; Bone healing ; Bone implants ; Bone Marrow Cells ; Cell Survival ; Coated Materials, Biocompatible ; Coatings ; E coli ; Escherichia coli - drug effects ; In vivo methods and tests ; Infections ; Male ; Mineralization ; Mollusks ; Osseointegration ; Osseointegration - drug effects ; Osteoblastogenesis ; Osteogenesis ; Osteogenesis - physiology ; Polyethylene glycol ; Polyethylene Glycols ; Prostheses and Implants ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Self-assembly ; Serine ; Staphylococcus aureus - drug effects ; Stem Cells - drug effects ; Surface Properties ; Surgical implants ; Tannic acid ; Tannins - chemistry ; Titanium ; Transplants &amp; implants</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2021-10, Vol.9 (4), p.851-8511</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-a05e2cae6004f27127597d99e1691cb54e0a2ad8424d1334cbd7241cd7dcaa4e3</citedby><cites>FETCH-LOGICAL-c378t-a05e2cae6004f27127597d99e1691cb54e0a2ad8424d1334cbd7241cd7dcaa4e3</cites><orcidid>0000-0002-8611-4089 ; 0000-0001-6830-1633 ; 0000-0002-2701-5179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34553738$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Mingyue</creatorcontrib><creatorcontrib>Dong, Zhiyun</creatorcontrib><creatorcontrib>Li, Jianshu</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Yin, Derong</creatorcontrib><creatorcontrib>Sun, Lizhong</creatorcontrib><creatorcontrib>Tao, Siying</creatorcontrib><creatorcontrib>Zhen, Li</creatorcontrib><creatorcontrib>Yang, Jiaojiao</creatorcontrib><creatorcontrib>Li, Jiyao</creatorcontrib><title>Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Implant associated infections (IAI) and poor osseointegration are the two major causes for titanium implant failure, leading to subsequent financial burden and physical sufferings. Therefore, advanced implants with excellent anti-infection and osseointegration performance are needed. In this work, mussel-inspired tannic acid (TA) mediated layer-by-layer (LbL) self-assembly was used for fabricating bonded polyethylene glycol (PEG) and 8DSS (8 repeating units of aspartate-serine-serine) coatings (Ti/8DSS/PEG) on the surface of titanium implants. The coating is designed to simultaneously reduce bacterial adhesion through the super-hydrophilic effect of PEG and promote osseointegration through the effective biomineralization of 8DSS. The obtained Ti/8DSS/PEG implant exhibits superior anti-biofouling capabilities (anti-protein adhesion and anti-bacterial adhesion against S. aureus and E. coli ) and excellent biocompatibility. Meanwhile, the Ti/8DSS/PEG implant accelerates osteoblast differentiation and presents significantly better osteogenic ability than bare titanium implants in vivo . This mussel-inspired TA mediated LbL self-assembly method is expected to provide a multifunctional and robust platform for surface engineering in bone repair. A facile and flexible strategy was presented for implant modification via tannic acid mediated layer-by-layer self-assembly coatings of polyethylene glycol and peptides. The obtained implants exhibit synergistic anti-fouling and osteogenic performances.</description><subject>Adhesion</subject><subject>Animals</subject><subject>Anti-Infective Agents - chemistry</subject><subject>Antiinfectives and antibacterials</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biofouling</subject><subject>Biomedical materials</subject><subject>Bivalvia</subject><subject>Bone healing</subject><subject>Bone implants</subject><subject>Bone Marrow Cells</subject><subject>Cell Survival</subject><subject>Coated Materials, Biocompatible</subject><subject>Coatings</subject><subject>E coli</subject><subject>Escherichia coli - drug effects</subject><subject>In vivo methods and tests</subject><subject>Infections</subject><subject>Male</subject><subject>Mineralization</subject><subject>Mollusks</subject><subject>Osseointegration</subject><subject>Osseointegration - drug effects</subject><subject>Osteoblastogenesis</subject><subject>Osteogenesis</subject><subject>Osteogenesis - physiology</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols</subject><subject>Prostheses and Implants</subject><subject>Random Allocation</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Self-assembly</subject><subject>Serine</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Stem Cells - drug effects</subject><subject>Surface Properties</subject><subject>Surgical implants</subject><subject>Tannic acid</subject><subject>Tannins - chemistry</subject><subject>Titanium</subject><subject>Transplants &amp; implants</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVoSEKSS-8thl5KwYk-LfnYpGlaSMglgd6MLI0XBVvaauzC_vfRdpMtVBdp9H48ZuYR8p7RC0ZFe-nZ3FPWUA0H5IRTRWutmHm3f9Nfx-Qc8ZmWY1hjhDwix0IqJbQwJ-TP_YIIYx0irkMGX5ViqG35m_pxU0FchQiwFcK0Hm2cK5fsHOIKqyHlCjcR8irgHFxVxFB8BnBzSLGUvko4Q1pBBAxYWedghGy36hk5HOyIcP56n5Kn7zeP1z_qu4fbn9df72ontJlrSxVwZ6GhVA5cM65Vq33bAmta5nolgVpuvZFceiaEdL3XXDLntXfWShCn5PPOd53T7wVw7qaApY0yCaQFO660MqKRpinop__Q57TkWLorlCnmlPEt9WVHuZwQMwzdOofJ5k3HaLcNpPvGHq_-BnJT4I-vlks_gd-jb-svwIcdkNHt1X-Jihf2EpG1</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>Han, Mingyue</creator><creator>Dong, Zhiyun</creator><creator>Li, Jianshu</creator><creator>Luo, Jun</creator><creator>Yin, Derong</creator><creator>Sun, Lizhong</creator><creator>Tao, Siying</creator><creator>Zhen, Li</creator><creator>Yang, Jiaojiao</creator><creator>Li, Jiyao</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8611-4089</orcidid><orcidid>https://orcid.org/0000-0001-6830-1633</orcidid><orcidid>https://orcid.org/0000-0002-2701-5179</orcidid></search><sort><creationdate>20211020</creationdate><title>Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration</title><author>Han, Mingyue ; Dong, Zhiyun ; Li, Jianshu ; Luo, Jun ; Yin, Derong ; Sun, Lizhong ; Tao, Siying ; Zhen, Li ; Yang, Jiaojiao ; Li, Jiyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-a05e2cae6004f27127597d99e1691cb54e0a2ad8424d1334cbd7241cd7dcaa4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adhesion</topic><topic>Animals</topic><topic>Anti-Infective Agents - chemistry</topic><topic>Antiinfectives and antibacterials</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biofouling</topic><topic>Biomedical materials</topic><topic>Bivalvia</topic><topic>Bone healing</topic><topic>Bone implants</topic><topic>Bone Marrow Cells</topic><topic>Cell Survival</topic><topic>Coated Materials, Biocompatible</topic><topic>Coatings</topic><topic>E coli</topic><topic>Escherichia coli - drug effects</topic><topic>In vivo methods and tests</topic><topic>Infections</topic><topic>Male</topic><topic>Mineralization</topic><topic>Mollusks</topic><topic>Osseointegration</topic><topic>Osseointegration - drug effects</topic><topic>Osteoblastogenesis</topic><topic>Osteogenesis</topic><topic>Osteogenesis - physiology</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols</topic><topic>Prostheses and Implants</topic><topic>Random Allocation</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Self-assembly</topic><topic>Serine</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Stem Cells - drug effects</topic><topic>Surface Properties</topic><topic>Surgical implants</topic><topic>Tannic acid</topic><topic>Tannins - chemistry</topic><topic>Titanium</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Mingyue</creatorcontrib><creatorcontrib>Dong, Zhiyun</creatorcontrib><creatorcontrib>Li, Jianshu</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Yin, Derong</creatorcontrib><creatorcontrib>Sun, Lizhong</creatorcontrib><creatorcontrib>Tao, Siying</creatorcontrib><creatorcontrib>Zhen, Li</creatorcontrib><creatorcontrib>Yang, Jiaojiao</creatorcontrib><creatorcontrib>Li, Jiyao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Mingyue</au><au>Dong, Zhiyun</au><au>Li, Jianshu</au><au>Luo, Jun</au><au>Yin, Derong</au><au>Sun, Lizhong</au><au>Tao, Siying</au><au>Zhen, Li</au><au>Yang, Jiaojiao</au><au>Li, Jiyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2021-10-20</date><risdate>2021</risdate><volume>9</volume><issue>4</issue><spage>851</spage><epage>8511</epage><pages>851-8511</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Implant associated infections (IAI) and poor osseointegration are the two major causes for titanium implant failure, leading to subsequent financial burden and physical sufferings. Therefore, advanced implants with excellent anti-infection and osseointegration performance are needed. In this work, mussel-inspired tannic acid (TA) mediated layer-by-layer (LbL) self-assembly was used for fabricating bonded polyethylene glycol (PEG) and 8DSS (8 repeating units of aspartate-serine-serine) coatings (Ti/8DSS/PEG) on the surface of titanium implants. The coating is designed to simultaneously reduce bacterial adhesion through the super-hydrophilic effect of PEG and promote osseointegration through the effective biomineralization of 8DSS. The obtained Ti/8DSS/PEG implant exhibits superior anti-biofouling capabilities (anti-protein adhesion and anti-bacterial adhesion against S. aureus and E. coli ) and excellent biocompatibility. Meanwhile, the Ti/8DSS/PEG implant accelerates osteoblast differentiation and presents significantly better osteogenic ability than bare titanium implants in vivo . This mussel-inspired TA mediated LbL self-assembly method is expected to provide a multifunctional and robust platform for surface engineering in bone repair. A facile and flexible strategy was presented for implant modification via tannic acid mediated layer-by-layer self-assembly coatings of polyethylene glycol and peptides. The obtained implants exhibit synergistic anti-fouling and osteogenic performances.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34553738</pmid><doi>10.1039/d1tb01607e</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8611-4089</orcidid><orcidid>https://orcid.org/0000-0001-6830-1633</orcidid><orcidid>https://orcid.org/0000-0002-2701-5179</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2021-10, Vol.9 (4), p.851-8511
issn 2050-750X
2050-7518
language eng
recordid cdi_rsc_primary_d1tb01607e
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Adhesion
Animals
Anti-Infective Agents - chemistry
Antiinfectives and antibacterials
Biocompatibility
Biocompatible Materials - chemistry
Biofouling
Biomedical materials
Bivalvia
Bone healing
Bone implants
Bone Marrow Cells
Cell Survival
Coated Materials, Biocompatible
Coatings
E coli
Escherichia coli - drug effects
In vivo methods and tests
Infections
Male
Mineralization
Mollusks
Osseointegration
Osseointegration - drug effects
Osteoblastogenesis
Osteogenesis
Osteogenesis - physiology
Polyethylene glycol
Polyethylene Glycols
Prostheses and Implants
Random Allocation
Rats
Rats, Sprague-Dawley
Self-assembly
Serine
Staphylococcus aureus - drug effects
Stem Cells - drug effects
Surface Properties
Surgical implants
Tannic acid
Tannins - chemistry
Titanium
Transplants & implants
title Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mussel-inspired%20self-assembly%20engineered%20implant%20coatings%20for%20synergistic%20anti-infection%20and%20osteogenesis%20acceleration&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Han,%20Mingyue&rft.date=2021-10-20&rft.volume=9&rft.issue=4&rft.spage=851&rft.epage=8511&rft.pages=851-8511&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d1tb01607e&rft_dat=%3Cproquest_rsc_p%3E2575836486%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583340126&rft_id=info:pmid/34553738&rfr_iscdi=true