Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration
Implant associated infections (IAI) and poor osseointegration are the two major causes for titanium implant failure, leading to subsequent financial burden and physical sufferings. Therefore, advanced implants with excellent anti-infection and osseointegration performance are needed. In this work, m...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2021-10, Vol.9 (4), p.851-8511 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8511 |
---|---|
container_issue | 4 |
container_start_page | 851 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 9 |
creator | Han, Mingyue Dong, Zhiyun Li, Jianshu Luo, Jun Yin, Derong Sun, Lizhong Tao, Siying Zhen, Li Yang, Jiaojiao Li, Jiyao |
description | Implant associated infections (IAI) and poor osseointegration are the two major causes for titanium implant failure, leading to subsequent financial burden and physical sufferings. Therefore, advanced implants with excellent anti-infection and osseointegration performance are needed. In this work, mussel-inspired tannic acid (TA) mediated layer-by-layer (LbL) self-assembly was used for fabricating bonded polyethylene glycol (PEG) and 8DSS (8 repeating units of aspartate-serine-serine) coatings (Ti/8DSS/PEG) on the surface of titanium implants. The coating is designed to simultaneously reduce bacterial adhesion through the super-hydrophilic effect of PEG and promote osseointegration through the effective biomineralization of 8DSS. The obtained Ti/8DSS/PEG implant exhibits superior anti-biofouling capabilities (anti-protein adhesion and anti-bacterial adhesion against
S. aureus
and
E. coli
) and excellent biocompatibility. Meanwhile, the Ti/8DSS/PEG implant accelerates osteoblast differentiation and presents significantly better osteogenic ability than bare titanium implants
in vivo
. This mussel-inspired TA mediated LbL self-assembly method is expected to provide a multifunctional and robust platform for surface engineering in bone repair.
A facile and flexible strategy was presented for implant modification
via
tannic acid mediated layer-by-layer self-assembly coatings of polyethylene glycol and peptides. The obtained implants exhibit synergistic anti-fouling and osteogenic performances. |
doi_str_mv | 10.1039/d1tb01607e |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1tb01607e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575836486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-a05e2cae6004f27127597d99e1691cb54e0a2ad8424d1334cbd7241cd7dcaa4e3</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVoSEKSS-8thl5KwYk-LfnYpGlaSMglgd6MLI0XBVvaauzC_vfRdpMtVBdp9H48ZuYR8p7RC0ZFe-nZ3FPWUA0H5IRTRWutmHm3f9Nfx-Qc8ZmWY1hjhDwix0IqJbQwJ-TP_YIIYx0irkMGX5ViqG35m_pxU0FchQiwFcK0Hm2cK5fsHOIKqyHlCjcR8irgHFxVxFB8BnBzSLGUvko4Q1pBBAxYWedghGy36hk5HOyIcP56n5Kn7zeP1z_qu4fbn9df72ontJlrSxVwZ6GhVA5cM65Vq33bAmta5nolgVpuvZFceiaEdL3XXDLntXfWShCn5PPOd53T7wVw7qaApY0yCaQFO660MqKRpinop__Q57TkWLorlCnmlPEt9WVHuZwQMwzdOofJ5k3HaLcNpPvGHq_-BnJT4I-vlks_gd-jb-svwIcdkNHt1X-Jihf2EpG1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583340126</pqid></control><display><type>article</type><title>Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Han, Mingyue ; Dong, Zhiyun ; Li, Jianshu ; Luo, Jun ; Yin, Derong ; Sun, Lizhong ; Tao, Siying ; Zhen, Li ; Yang, Jiaojiao ; Li, Jiyao</creator><creatorcontrib>Han, Mingyue ; Dong, Zhiyun ; Li, Jianshu ; Luo, Jun ; Yin, Derong ; Sun, Lizhong ; Tao, Siying ; Zhen, Li ; Yang, Jiaojiao ; Li, Jiyao</creatorcontrib><description>Implant associated infections (IAI) and poor osseointegration are the two major causes for titanium implant failure, leading to subsequent financial burden and physical sufferings. Therefore, advanced implants with excellent anti-infection and osseointegration performance are needed. In this work, mussel-inspired tannic acid (TA) mediated layer-by-layer (LbL) self-assembly was used for fabricating bonded polyethylene glycol (PEG) and 8DSS (8 repeating units of aspartate-serine-serine) coatings (Ti/8DSS/PEG) on the surface of titanium implants. The coating is designed to simultaneously reduce bacterial adhesion through the super-hydrophilic effect of PEG and promote osseointegration through the effective biomineralization of 8DSS. The obtained Ti/8DSS/PEG implant exhibits superior anti-biofouling capabilities (anti-protein adhesion and anti-bacterial adhesion against
S. aureus
and
E. coli
) and excellent biocompatibility. Meanwhile, the Ti/8DSS/PEG implant accelerates osteoblast differentiation and presents significantly better osteogenic ability than bare titanium implants
in vivo
. This mussel-inspired TA mediated LbL self-assembly method is expected to provide a multifunctional and robust platform for surface engineering in bone repair.
A facile and flexible strategy was presented for implant modification
via
tannic acid mediated layer-by-layer self-assembly coatings of polyethylene glycol and peptides. The obtained implants exhibit synergistic anti-fouling and osteogenic performances.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d1tb01607e</identifier><identifier>PMID: 34553738</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adhesion ; Animals ; Anti-Infective Agents - chemistry ; Antiinfectives and antibacterials ; Biocompatibility ; Biocompatible Materials - chemistry ; Biofouling ; Biomedical materials ; Bivalvia ; Bone healing ; Bone implants ; Bone Marrow Cells ; Cell Survival ; Coated Materials, Biocompatible ; Coatings ; E coli ; Escherichia coli - drug effects ; In vivo methods and tests ; Infections ; Male ; Mineralization ; Mollusks ; Osseointegration ; Osseointegration - drug effects ; Osteoblastogenesis ; Osteogenesis ; Osteogenesis - physiology ; Polyethylene glycol ; Polyethylene Glycols ; Prostheses and Implants ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Self-assembly ; Serine ; Staphylococcus aureus - drug effects ; Stem Cells - drug effects ; Surface Properties ; Surgical implants ; Tannic acid ; Tannins - chemistry ; Titanium ; Transplants & implants</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2021-10, Vol.9 (4), p.851-8511</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-a05e2cae6004f27127597d99e1691cb54e0a2ad8424d1334cbd7241cd7dcaa4e3</citedby><cites>FETCH-LOGICAL-c378t-a05e2cae6004f27127597d99e1691cb54e0a2ad8424d1334cbd7241cd7dcaa4e3</cites><orcidid>0000-0002-8611-4089 ; 0000-0001-6830-1633 ; 0000-0002-2701-5179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34553738$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Mingyue</creatorcontrib><creatorcontrib>Dong, Zhiyun</creatorcontrib><creatorcontrib>Li, Jianshu</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Yin, Derong</creatorcontrib><creatorcontrib>Sun, Lizhong</creatorcontrib><creatorcontrib>Tao, Siying</creatorcontrib><creatorcontrib>Zhen, Li</creatorcontrib><creatorcontrib>Yang, Jiaojiao</creatorcontrib><creatorcontrib>Li, Jiyao</creatorcontrib><title>Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Implant associated infections (IAI) and poor osseointegration are the two major causes for titanium implant failure, leading to subsequent financial burden and physical sufferings. Therefore, advanced implants with excellent anti-infection and osseointegration performance are needed. In this work, mussel-inspired tannic acid (TA) mediated layer-by-layer (LbL) self-assembly was used for fabricating bonded polyethylene glycol (PEG) and 8DSS (8 repeating units of aspartate-serine-serine) coatings (Ti/8DSS/PEG) on the surface of titanium implants. The coating is designed to simultaneously reduce bacterial adhesion through the super-hydrophilic effect of PEG and promote osseointegration through the effective biomineralization of 8DSS. The obtained Ti/8DSS/PEG implant exhibits superior anti-biofouling capabilities (anti-protein adhesion and anti-bacterial adhesion against
S. aureus
and
E. coli
) and excellent biocompatibility. Meanwhile, the Ti/8DSS/PEG implant accelerates osteoblast differentiation and presents significantly better osteogenic ability than bare titanium implants
in vivo
. This mussel-inspired TA mediated LbL self-assembly method is expected to provide a multifunctional and robust platform for surface engineering in bone repair.
A facile and flexible strategy was presented for implant modification
via
tannic acid mediated layer-by-layer self-assembly coatings of polyethylene glycol and peptides. The obtained implants exhibit synergistic anti-fouling and osteogenic performances.</description><subject>Adhesion</subject><subject>Animals</subject><subject>Anti-Infective Agents - chemistry</subject><subject>Antiinfectives and antibacterials</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biofouling</subject><subject>Biomedical materials</subject><subject>Bivalvia</subject><subject>Bone healing</subject><subject>Bone implants</subject><subject>Bone Marrow Cells</subject><subject>Cell Survival</subject><subject>Coated Materials, Biocompatible</subject><subject>Coatings</subject><subject>E coli</subject><subject>Escherichia coli - drug effects</subject><subject>In vivo methods and tests</subject><subject>Infections</subject><subject>Male</subject><subject>Mineralization</subject><subject>Mollusks</subject><subject>Osseointegration</subject><subject>Osseointegration - drug effects</subject><subject>Osteoblastogenesis</subject><subject>Osteogenesis</subject><subject>Osteogenesis - physiology</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols</subject><subject>Prostheses and Implants</subject><subject>Random Allocation</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Self-assembly</subject><subject>Serine</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Stem Cells - drug effects</subject><subject>Surface Properties</subject><subject>Surgical implants</subject><subject>Tannic acid</subject><subject>Tannins - chemistry</subject><subject>Titanium</subject><subject>Transplants & implants</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVoSEKSS-8thl5KwYk-LfnYpGlaSMglgd6MLI0XBVvaauzC_vfRdpMtVBdp9H48ZuYR8p7RC0ZFe-nZ3FPWUA0H5IRTRWutmHm3f9Nfx-Qc8ZmWY1hjhDwix0IqJbQwJ-TP_YIIYx0irkMGX5ViqG35m_pxU0FchQiwFcK0Hm2cK5fsHOIKqyHlCjcR8irgHFxVxFB8BnBzSLGUvko4Q1pBBAxYWedghGy36hk5HOyIcP56n5Kn7zeP1z_qu4fbn9df72ontJlrSxVwZ6GhVA5cM65Vq33bAmta5nolgVpuvZFceiaEdL3XXDLntXfWShCn5PPOd53T7wVw7qaApY0yCaQFO660MqKRpinop__Q57TkWLorlCnmlPEt9WVHuZwQMwzdOofJ5k3HaLcNpPvGHq_-BnJT4I-vlks_gd-jb-svwIcdkNHt1X-Jihf2EpG1</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>Han, Mingyue</creator><creator>Dong, Zhiyun</creator><creator>Li, Jianshu</creator><creator>Luo, Jun</creator><creator>Yin, Derong</creator><creator>Sun, Lizhong</creator><creator>Tao, Siying</creator><creator>Zhen, Li</creator><creator>Yang, Jiaojiao</creator><creator>Li, Jiyao</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8611-4089</orcidid><orcidid>https://orcid.org/0000-0001-6830-1633</orcidid><orcidid>https://orcid.org/0000-0002-2701-5179</orcidid></search><sort><creationdate>20211020</creationdate><title>Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration</title><author>Han, Mingyue ; Dong, Zhiyun ; Li, Jianshu ; Luo, Jun ; Yin, Derong ; Sun, Lizhong ; Tao, Siying ; Zhen, Li ; Yang, Jiaojiao ; Li, Jiyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-a05e2cae6004f27127597d99e1691cb54e0a2ad8424d1334cbd7241cd7dcaa4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adhesion</topic><topic>Animals</topic><topic>Anti-Infective Agents - chemistry</topic><topic>Antiinfectives and antibacterials</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biofouling</topic><topic>Biomedical materials</topic><topic>Bivalvia</topic><topic>Bone healing</topic><topic>Bone implants</topic><topic>Bone Marrow Cells</topic><topic>Cell Survival</topic><topic>Coated Materials, Biocompatible</topic><topic>Coatings</topic><topic>E coli</topic><topic>Escherichia coli - drug effects</topic><topic>In vivo methods and tests</topic><topic>Infections</topic><topic>Male</topic><topic>Mineralization</topic><topic>Mollusks</topic><topic>Osseointegration</topic><topic>Osseointegration - drug effects</topic><topic>Osteoblastogenesis</topic><topic>Osteogenesis</topic><topic>Osteogenesis - physiology</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols</topic><topic>Prostheses and Implants</topic><topic>Random Allocation</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Self-assembly</topic><topic>Serine</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Stem Cells - drug effects</topic><topic>Surface Properties</topic><topic>Surgical implants</topic><topic>Tannic acid</topic><topic>Tannins - chemistry</topic><topic>Titanium</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Mingyue</creatorcontrib><creatorcontrib>Dong, Zhiyun</creatorcontrib><creatorcontrib>Li, Jianshu</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Yin, Derong</creatorcontrib><creatorcontrib>Sun, Lizhong</creatorcontrib><creatorcontrib>Tao, Siying</creatorcontrib><creatorcontrib>Zhen, Li</creatorcontrib><creatorcontrib>Yang, Jiaojiao</creatorcontrib><creatorcontrib>Li, Jiyao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Mingyue</au><au>Dong, Zhiyun</au><au>Li, Jianshu</au><au>Luo, Jun</au><au>Yin, Derong</au><au>Sun, Lizhong</au><au>Tao, Siying</au><au>Zhen, Li</au><au>Yang, Jiaojiao</au><au>Li, Jiyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2021-10-20</date><risdate>2021</risdate><volume>9</volume><issue>4</issue><spage>851</spage><epage>8511</epage><pages>851-8511</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Implant associated infections (IAI) and poor osseointegration are the two major causes for titanium implant failure, leading to subsequent financial burden and physical sufferings. Therefore, advanced implants with excellent anti-infection and osseointegration performance are needed. In this work, mussel-inspired tannic acid (TA) mediated layer-by-layer (LbL) self-assembly was used for fabricating bonded polyethylene glycol (PEG) and 8DSS (8 repeating units of aspartate-serine-serine) coatings (Ti/8DSS/PEG) on the surface of titanium implants. The coating is designed to simultaneously reduce bacterial adhesion through the super-hydrophilic effect of PEG and promote osseointegration through the effective biomineralization of 8DSS. The obtained Ti/8DSS/PEG implant exhibits superior anti-biofouling capabilities (anti-protein adhesion and anti-bacterial adhesion against
S. aureus
and
E. coli
) and excellent biocompatibility. Meanwhile, the Ti/8DSS/PEG implant accelerates osteoblast differentiation and presents significantly better osteogenic ability than bare titanium implants
in vivo
. This mussel-inspired TA mediated LbL self-assembly method is expected to provide a multifunctional and robust platform for surface engineering in bone repair.
A facile and flexible strategy was presented for implant modification
via
tannic acid mediated layer-by-layer self-assembly coatings of polyethylene glycol and peptides. The obtained implants exhibit synergistic anti-fouling and osteogenic performances.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34553738</pmid><doi>10.1039/d1tb01607e</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8611-4089</orcidid><orcidid>https://orcid.org/0000-0001-6830-1633</orcidid><orcidid>https://orcid.org/0000-0002-2701-5179</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2021-10, Vol.9 (4), p.851-8511 |
issn | 2050-750X 2050-7518 |
language | eng |
recordid | cdi_rsc_primary_d1tb01607e |
source | MEDLINE; Royal Society Of Chemistry Journals 2008- |
subjects | Adhesion Animals Anti-Infective Agents - chemistry Antiinfectives and antibacterials Biocompatibility Biocompatible Materials - chemistry Biofouling Biomedical materials Bivalvia Bone healing Bone implants Bone Marrow Cells Cell Survival Coated Materials, Biocompatible Coatings E coli Escherichia coli - drug effects In vivo methods and tests Infections Male Mineralization Mollusks Osseointegration Osseointegration - drug effects Osteoblastogenesis Osteogenesis Osteogenesis - physiology Polyethylene glycol Polyethylene Glycols Prostheses and Implants Random Allocation Rats Rats, Sprague-Dawley Self-assembly Serine Staphylococcus aureus - drug effects Stem Cells - drug effects Surface Properties Surgical implants Tannic acid Tannins - chemistry Titanium Transplants & implants |
title | Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mussel-inspired%20self-assembly%20engineered%20implant%20coatings%20for%20synergistic%20anti-infection%20and%20osteogenesis%20acceleration&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Han,%20Mingyue&rft.date=2021-10-20&rft.volume=9&rft.issue=4&rft.spage=851&rft.epage=8511&rft.pages=851-8511&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d1tb01607e&rft_dat=%3Cproquest_rsc_p%3E2575836486%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583340126&rft_id=info:pmid/34553738&rfr_iscdi=true |