Cascade catalytic nanoplatform constructed by laterally-functionalized pillar[5]arenes for antibacterial chemodynamic therapy
Chemodynamic therapy (CDT) is an emerging approach to overcome bacterial infections that can efficiently convert hydrogen peroxide (H 2 O 2 ) to generate highly toxic hydroxyl radicals (&z.rad;OH). How to develop safe and effective CDT-based strategies is in high demand but challenging. Herein,...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2021-06, Vol.9 (25), p.569-575 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 575 |
---|---|
container_issue | 25 |
container_start_page | 569 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 9 |
creator | Li, Fei Zang, Mingsong Hou, Jinxing Luo, Quan Yu, Shuangjiang Sun, Hongcheng Xu, Jiayun Liu, Junqiu |
description | Chemodynamic therapy (CDT) is an emerging approach to overcome bacterial infections that can efficiently convert hydrogen peroxide (H
2
O
2
) to generate highly toxic hydroxyl radicals (&z.rad;OH). How to develop safe and effective CDT-based strategies is in high demand but challenging. Herein, a cascade catalytic nanoplatform (GOx-NCs/Fe
3
O
4
) was designed by absorbing glucose oxidase (GOx) onto the surface of covalent-assembled polymer capsules (NCs) encapsulating Fe
3
O
4
nanoparticles. With the presence of glucose, GOx could effectively catalyze it to produce H
2
O
2
and result in a decrease in pH value, both of which would assist the subsequent Fenton reaction. Encapsulated Fe
3
O
4
nanoparticles would subsequently trigger H
2
O
2
to produce &z.rad;OH, which could make antibacterial CDT come true. More importantly, the polymer capsules exhibited little to no cytotoxicity towards mammalian cells, which might provide more opportunities and potential to apply in other fields.
A cascade catalytic nanoplatform was established for effective chemodynamic antibacterial therapy. |
doi_str_mv | 10.1039/d1tb00868d |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1tb00868d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546530925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-dc8dd09a8984f78ea1038979cae8f420345287d3b4c3358666b2f120909cd69c3</originalsourceid><addsrcrecordid>eNpFkUtLxDAQgIsouKx78S4EvAnVpGna5Ki7vmDBywqCSJkmKdslbWqSHir4342u6FxmmPnmnSSnBF8STMWVIqHGmBdcHSSzDDOclozwwz8bvxwnC-93OAonBaf5LPlcgpegNJIQwEyhlaiH3g4GQmNdh6TtfXCjDFqhekLRrR0YM6XN2MvQ2h5M-xFjQ2sMuFf2Bk732qOYjKAPbQ0x1bVgkNzqzqqphy72CNtYZphOkqMGjNeLXz1Pnu9uN8uHdP10_7i8XqeSkjykSnKlsAAueN6UXENcl4tSSNC8yTNMc5bxUtE6l5QyXhRFnTUkwwILqQoh6Tw539cdnH0ftQ_Vzo4uzu6rjOUFo1hkLFIXe0o6673TTTW4tgM3VQRX3xeuVmRz83PhVYTP9rDz8o_7_wD9AuMCeqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546530925</pqid></control><display><type>article</type><title>Cascade catalytic nanoplatform constructed by laterally-functionalized pillar[5]arenes for antibacterial chemodynamic therapy</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Fei ; Zang, Mingsong ; Hou, Jinxing ; Luo, Quan ; Yu, Shuangjiang ; Sun, Hongcheng ; Xu, Jiayun ; Liu, Junqiu</creator><creatorcontrib>Li, Fei ; Zang, Mingsong ; Hou, Jinxing ; Luo, Quan ; Yu, Shuangjiang ; Sun, Hongcheng ; Xu, Jiayun ; Liu, Junqiu</creatorcontrib><description>Chemodynamic therapy (CDT) is an emerging approach to overcome bacterial infections that can efficiently convert hydrogen peroxide (H
2
O
2
) to generate highly toxic hydroxyl radicals (&z.rad;OH). How to develop safe and effective CDT-based strategies is in high demand but challenging. Herein, a cascade catalytic nanoplatform (GOx-NCs/Fe
3
O
4
) was designed by absorbing glucose oxidase (GOx) onto the surface of covalent-assembled polymer capsules (NCs) encapsulating Fe
3
O
4
nanoparticles. With the presence of glucose, GOx could effectively catalyze it to produce H
2
O
2
and result in a decrease in pH value, both of which would assist the subsequent Fenton reaction. Encapsulated Fe
3
O
4
nanoparticles would subsequently trigger H
2
O
2
to produce &z.rad;OH, which could make antibacterial CDT come true. More importantly, the polymer capsules exhibited little to no cytotoxicity towards mammalian cells, which might provide more opportunities and potential to apply in other fields.
A cascade catalytic nanoplatform was established for effective chemodynamic antibacterial therapy.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d1tb00868d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antiinfectives and antibacterials ; Aromatic compounds ; Bacterial diseases ; Cytotoxicity ; Encapsulation ; Free radicals ; Glucose oxidase ; Hydrogen peroxide ; Hydroxyl radicals ; Iron oxides ; Mammalian cells ; Nanoparticles ; Polymers ; Toxicity</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2021-06, Vol.9 (25), p.569-575</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-dc8dd09a8984f78ea1038979cae8f420345287d3b4c3358666b2f120909cd69c3</citedby><cites>FETCH-LOGICAL-c314t-dc8dd09a8984f78ea1038979cae8f420345287d3b4c3358666b2f120909cd69c3</cites><orcidid>0000-0002-0533-171X ; 0000-0003-0943-991X ; 0000-0002-3231-2039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Zang, Mingsong</creatorcontrib><creatorcontrib>Hou, Jinxing</creatorcontrib><creatorcontrib>Luo, Quan</creatorcontrib><creatorcontrib>Yu, Shuangjiang</creatorcontrib><creatorcontrib>Sun, Hongcheng</creatorcontrib><creatorcontrib>Xu, Jiayun</creatorcontrib><creatorcontrib>Liu, Junqiu</creatorcontrib><title>Cascade catalytic nanoplatform constructed by laterally-functionalized pillar[5]arenes for antibacterial chemodynamic therapy</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><description>Chemodynamic therapy (CDT) is an emerging approach to overcome bacterial infections that can efficiently convert hydrogen peroxide (H
2
O
2
) to generate highly toxic hydroxyl radicals (&z.rad;OH). How to develop safe and effective CDT-based strategies is in high demand but challenging. Herein, a cascade catalytic nanoplatform (GOx-NCs/Fe
3
O
4
) was designed by absorbing glucose oxidase (GOx) onto the surface of covalent-assembled polymer capsules (NCs) encapsulating Fe
3
O
4
nanoparticles. With the presence of glucose, GOx could effectively catalyze it to produce H
2
O
2
and result in a decrease in pH value, both of which would assist the subsequent Fenton reaction. Encapsulated Fe
3
O
4
nanoparticles would subsequently trigger H
2
O
2
to produce &z.rad;OH, which could make antibacterial CDT come true. More importantly, the polymer capsules exhibited little to no cytotoxicity towards mammalian cells, which might provide more opportunities and potential to apply in other fields.
A cascade catalytic nanoplatform was established for effective chemodynamic antibacterial therapy.</description><subject>Antiinfectives and antibacterials</subject><subject>Aromatic compounds</subject><subject>Bacterial diseases</subject><subject>Cytotoxicity</subject><subject>Encapsulation</subject><subject>Free radicals</subject><subject>Glucose oxidase</subject><subject>Hydrogen peroxide</subject><subject>Hydroxyl radicals</subject><subject>Iron oxides</subject><subject>Mammalian cells</subject><subject>Nanoparticles</subject><subject>Polymers</subject><subject>Toxicity</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkUtLxDAQgIsouKx78S4EvAnVpGna5Ki7vmDBywqCSJkmKdslbWqSHir4342u6FxmmPnmnSSnBF8STMWVIqHGmBdcHSSzDDOclozwwz8bvxwnC-93OAonBaf5LPlcgpegNJIQwEyhlaiH3g4GQmNdh6TtfXCjDFqhekLRrR0YM6XN2MvQ2h5M-xFjQ2sMuFf2Bk732qOYjKAPbQ0x1bVgkNzqzqqphy72CNtYZphOkqMGjNeLXz1Pnu9uN8uHdP10_7i8XqeSkjykSnKlsAAueN6UXENcl4tSSNC8yTNMc5bxUtE6l5QyXhRFnTUkwwILqQoh6Tw539cdnH0ftQ_Vzo4uzu6rjOUFo1hkLFIXe0o6673TTTW4tgM3VQRX3xeuVmRz83PhVYTP9rDz8o_7_wD9AuMCeqQ</recordid><startdate>20210630</startdate><enddate>20210630</enddate><creator>Li, Fei</creator><creator>Zang, Mingsong</creator><creator>Hou, Jinxing</creator><creator>Luo, Quan</creator><creator>Yu, Shuangjiang</creator><creator>Sun, Hongcheng</creator><creator>Xu, Jiayun</creator><creator>Liu, Junqiu</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-0533-171X</orcidid><orcidid>https://orcid.org/0000-0003-0943-991X</orcidid><orcidid>https://orcid.org/0000-0002-3231-2039</orcidid></search><sort><creationdate>20210630</creationdate><title>Cascade catalytic nanoplatform constructed by laterally-functionalized pillar[5]arenes for antibacterial chemodynamic therapy</title><author>Li, Fei ; Zang, Mingsong ; Hou, Jinxing ; Luo, Quan ; Yu, Shuangjiang ; Sun, Hongcheng ; Xu, Jiayun ; Liu, Junqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-dc8dd09a8984f78ea1038979cae8f420345287d3b4c3358666b2f120909cd69c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antiinfectives and antibacterials</topic><topic>Aromatic compounds</topic><topic>Bacterial diseases</topic><topic>Cytotoxicity</topic><topic>Encapsulation</topic><topic>Free radicals</topic><topic>Glucose oxidase</topic><topic>Hydrogen peroxide</topic><topic>Hydroxyl radicals</topic><topic>Iron oxides</topic><topic>Mammalian cells</topic><topic>Nanoparticles</topic><topic>Polymers</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Zang, Mingsong</creatorcontrib><creatorcontrib>Hou, Jinxing</creatorcontrib><creatorcontrib>Luo, Quan</creatorcontrib><creatorcontrib>Yu, Shuangjiang</creatorcontrib><creatorcontrib>Sun, Hongcheng</creatorcontrib><creatorcontrib>Xu, Jiayun</creatorcontrib><creatorcontrib>Liu, Junqiu</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fei</au><au>Zang, Mingsong</au><au>Hou, Jinxing</au><au>Luo, Quan</au><au>Yu, Shuangjiang</au><au>Sun, Hongcheng</au><au>Xu, Jiayun</au><au>Liu, Junqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cascade catalytic nanoplatform constructed by laterally-functionalized pillar[5]arenes for antibacterial chemodynamic therapy</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><date>2021-06-30</date><risdate>2021</risdate><volume>9</volume><issue>25</issue><spage>569</spage><epage>575</epage><pages>569-575</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Chemodynamic therapy (CDT) is an emerging approach to overcome bacterial infections that can efficiently convert hydrogen peroxide (H
2
O
2
) to generate highly toxic hydroxyl radicals (&z.rad;OH). How to develop safe and effective CDT-based strategies is in high demand but challenging. Herein, a cascade catalytic nanoplatform (GOx-NCs/Fe
3
O
4
) was designed by absorbing glucose oxidase (GOx) onto the surface of covalent-assembled polymer capsules (NCs) encapsulating Fe
3
O
4
nanoparticles. With the presence of glucose, GOx could effectively catalyze it to produce H
2
O
2
and result in a decrease in pH value, both of which would assist the subsequent Fenton reaction. Encapsulated Fe
3
O
4
nanoparticles would subsequently trigger H
2
O
2
to produce &z.rad;OH, which could make antibacterial CDT come true. More importantly, the polymer capsules exhibited little to no cytotoxicity towards mammalian cells, which might provide more opportunities and potential to apply in other fields.
A cascade catalytic nanoplatform was established for effective chemodynamic antibacterial therapy.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1tb00868d</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0533-171X</orcidid><orcidid>https://orcid.org/0000-0003-0943-991X</orcidid><orcidid>https://orcid.org/0000-0002-3231-2039</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2021-06, Vol.9 (25), p.569-575 |
issn | 2050-750X 2050-7518 |
language | eng |
recordid | cdi_rsc_primary_d1tb00868d |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Antiinfectives and antibacterials Aromatic compounds Bacterial diseases Cytotoxicity Encapsulation Free radicals Glucose oxidase Hydrogen peroxide Hydroxyl radicals Iron oxides Mammalian cells Nanoparticles Polymers Toxicity |
title | Cascade catalytic nanoplatform constructed by laterally-functionalized pillar[5]arenes for antibacterial chemodynamic therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cascade%20catalytic%20nanoplatform%20constructed%20by%20laterally-functionalized%20pillar%5B5%5Darenes%20for%20antibacterial%20chemodynamic%20therapy&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Li,%20Fei&rft.date=2021-06-30&rft.volume=9&rft.issue=25&rft.spage=569&rft.epage=575&rft.pages=569-575&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d1tb00868d&rft_dat=%3Cproquest_rsc_p%3E2546530925%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546530925&rft_id=info:pmid/&rfr_iscdi=true |