Cascade catalytic nanoplatform constructed by laterally-functionalized pillar[5]arenes for antibacterial chemodynamic therapy

Chemodynamic therapy (CDT) is an emerging approach to overcome bacterial infections that can efficiently convert hydrogen peroxide (H 2 O 2 ) to generate highly toxic hydroxyl radicals (&z.rad;OH). How to develop safe and effective CDT-based strategies is in high demand but challenging. Herein,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2021-06, Vol.9 (25), p.569-575
Hauptverfasser: Li, Fei, Zang, Mingsong, Hou, Jinxing, Luo, Quan, Yu, Shuangjiang, Sun, Hongcheng, Xu, Jiayun, Liu, Junqiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 575
container_issue 25
container_start_page 569
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 9
creator Li, Fei
Zang, Mingsong
Hou, Jinxing
Luo, Quan
Yu, Shuangjiang
Sun, Hongcheng
Xu, Jiayun
Liu, Junqiu
description Chemodynamic therapy (CDT) is an emerging approach to overcome bacterial infections that can efficiently convert hydrogen peroxide (H 2 O 2 ) to generate highly toxic hydroxyl radicals (&z.rad;OH). How to develop safe and effective CDT-based strategies is in high demand but challenging. Herein, a cascade catalytic nanoplatform (GOx-NCs/Fe 3 O 4 ) was designed by absorbing glucose oxidase (GOx) onto the surface of covalent-assembled polymer capsules (NCs) encapsulating Fe 3 O 4 nanoparticles. With the presence of glucose, GOx could effectively catalyze it to produce H 2 O 2 and result in a decrease in pH value, both of which would assist the subsequent Fenton reaction. Encapsulated Fe 3 O 4 nanoparticles would subsequently trigger H 2 O 2 to produce &z.rad;OH, which could make antibacterial CDT come true. More importantly, the polymer capsules exhibited little to no cytotoxicity towards mammalian cells, which might provide more opportunities and potential to apply in other fields. A cascade catalytic nanoplatform was established for effective chemodynamic antibacterial therapy.
doi_str_mv 10.1039/d1tb00868d
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1tb00868d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546530925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-dc8dd09a8984f78ea1038979cae8f420345287d3b4c3358666b2f120909cd69c3</originalsourceid><addsrcrecordid>eNpFkUtLxDAQgIsouKx78S4EvAnVpGna5Ki7vmDBywqCSJkmKdslbWqSHir4342u6FxmmPnmnSSnBF8STMWVIqHGmBdcHSSzDDOclozwwz8bvxwnC-93OAonBaf5LPlcgpegNJIQwEyhlaiH3g4GQmNdh6TtfXCjDFqhekLRrR0YM6XN2MvQ2h5M-xFjQ2sMuFf2Bk732qOYjKAPbQ0x1bVgkNzqzqqphy72CNtYZphOkqMGjNeLXz1Pnu9uN8uHdP10_7i8XqeSkjykSnKlsAAueN6UXENcl4tSSNC8yTNMc5bxUtE6l5QyXhRFnTUkwwILqQoh6Tw539cdnH0ftQ_Vzo4uzu6rjOUFo1hkLFIXe0o6673TTTW4tgM3VQRX3xeuVmRz83PhVYTP9rDz8o_7_wD9AuMCeqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546530925</pqid></control><display><type>article</type><title>Cascade catalytic nanoplatform constructed by laterally-functionalized pillar[5]arenes for antibacterial chemodynamic therapy</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Fei ; Zang, Mingsong ; Hou, Jinxing ; Luo, Quan ; Yu, Shuangjiang ; Sun, Hongcheng ; Xu, Jiayun ; Liu, Junqiu</creator><creatorcontrib>Li, Fei ; Zang, Mingsong ; Hou, Jinxing ; Luo, Quan ; Yu, Shuangjiang ; Sun, Hongcheng ; Xu, Jiayun ; Liu, Junqiu</creatorcontrib><description>Chemodynamic therapy (CDT) is an emerging approach to overcome bacterial infections that can efficiently convert hydrogen peroxide (H 2 O 2 ) to generate highly toxic hydroxyl radicals (&amp;z.rad;OH). How to develop safe and effective CDT-based strategies is in high demand but challenging. Herein, a cascade catalytic nanoplatform (GOx-NCs/Fe 3 O 4 ) was designed by absorbing glucose oxidase (GOx) onto the surface of covalent-assembled polymer capsules (NCs) encapsulating Fe 3 O 4 nanoparticles. With the presence of glucose, GOx could effectively catalyze it to produce H 2 O 2 and result in a decrease in pH value, both of which would assist the subsequent Fenton reaction. Encapsulated Fe 3 O 4 nanoparticles would subsequently trigger H 2 O 2 to produce &amp;z.rad;OH, which could make antibacterial CDT come true. More importantly, the polymer capsules exhibited little to no cytotoxicity towards mammalian cells, which might provide more opportunities and potential to apply in other fields. A cascade catalytic nanoplatform was established for effective chemodynamic antibacterial therapy.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d1tb00868d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antiinfectives and antibacterials ; Aromatic compounds ; Bacterial diseases ; Cytotoxicity ; Encapsulation ; Free radicals ; Glucose oxidase ; Hydrogen peroxide ; Hydroxyl radicals ; Iron oxides ; Mammalian cells ; Nanoparticles ; Polymers ; Toxicity</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2021-06, Vol.9 (25), p.569-575</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-dc8dd09a8984f78ea1038979cae8f420345287d3b4c3358666b2f120909cd69c3</citedby><cites>FETCH-LOGICAL-c314t-dc8dd09a8984f78ea1038979cae8f420345287d3b4c3358666b2f120909cd69c3</cites><orcidid>0000-0002-0533-171X ; 0000-0003-0943-991X ; 0000-0002-3231-2039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Zang, Mingsong</creatorcontrib><creatorcontrib>Hou, Jinxing</creatorcontrib><creatorcontrib>Luo, Quan</creatorcontrib><creatorcontrib>Yu, Shuangjiang</creatorcontrib><creatorcontrib>Sun, Hongcheng</creatorcontrib><creatorcontrib>Xu, Jiayun</creatorcontrib><creatorcontrib>Liu, Junqiu</creatorcontrib><title>Cascade catalytic nanoplatform constructed by laterally-functionalized pillar[5]arenes for antibacterial chemodynamic therapy</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><description>Chemodynamic therapy (CDT) is an emerging approach to overcome bacterial infections that can efficiently convert hydrogen peroxide (H 2 O 2 ) to generate highly toxic hydroxyl radicals (&amp;z.rad;OH). How to develop safe and effective CDT-based strategies is in high demand but challenging. Herein, a cascade catalytic nanoplatform (GOx-NCs/Fe 3 O 4 ) was designed by absorbing glucose oxidase (GOx) onto the surface of covalent-assembled polymer capsules (NCs) encapsulating Fe 3 O 4 nanoparticles. With the presence of glucose, GOx could effectively catalyze it to produce H 2 O 2 and result in a decrease in pH value, both of which would assist the subsequent Fenton reaction. Encapsulated Fe 3 O 4 nanoparticles would subsequently trigger H 2 O 2 to produce &amp;z.rad;OH, which could make antibacterial CDT come true. More importantly, the polymer capsules exhibited little to no cytotoxicity towards mammalian cells, which might provide more opportunities and potential to apply in other fields. A cascade catalytic nanoplatform was established for effective chemodynamic antibacterial therapy.</description><subject>Antiinfectives and antibacterials</subject><subject>Aromatic compounds</subject><subject>Bacterial diseases</subject><subject>Cytotoxicity</subject><subject>Encapsulation</subject><subject>Free radicals</subject><subject>Glucose oxidase</subject><subject>Hydrogen peroxide</subject><subject>Hydroxyl radicals</subject><subject>Iron oxides</subject><subject>Mammalian cells</subject><subject>Nanoparticles</subject><subject>Polymers</subject><subject>Toxicity</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkUtLxDAQgIsouKx78S4EvAnVpGna5Ki7vmDBywqCSJkmKdslbWqSHir4342u6FxmmPnmnSSnBF8STMWVIqHGmBdcHSSzDDOclozwwz8bvxwnC-93OAonBaf5LPlcgpegNJIQwEyhlaiH3g4GQmNdh6TtfXCjDFqhekLRrR0YM6XN2MvQ2h5M-xFjQ2sMuFf2Bk732qOYjKAPbQ0x1bVgkNzqzqqphy72CNtYZphOkqMGjNeLXz1Pnu9uN8uHdP10_7i8XqeSkjykSnKlsAAueN6UXENcl4tSSNC8yTNMc5bxUtE6l5QyXhRFnTUkwwILqQoh6Tw539cdnH0ftQ_Vzo4uzu6rjOUFo1hkLFIXe0o6673TTTW4tgM3VQRX3xeuVmRz83PhVYTP9rDz8o_7_wD9AuMCeqQ</recordid><startdate>20210630</startdate><enddate>20210630</enddate><creator>Li, Fei</creator><creator>Zang, Mingsong</creator><creator>Hou, Jinxing</creator><creator>Luo, Quan</creator><creator>Yu, Shuangjiang</creator><creator>Sun, Hongcheng</creator><creator>Xu, Jiayun</creator><creator>Liu, Junqiu</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-0533-171X</orcidid><orcidid>https://orcid.org/0000-0003-0943-991X</orcidid><orcidid>https://orcid.org/0000-0002-3231-2039</orcidid></search><sort><creationdate>20210630</creationdate><title>Cascade catalytic nanoplatform constructed by laterally-functionalized pillar[5]arenes for antibacterial chemodynamic therapy</title><author>Li, Fei ; Zang, Mingsong ; Hou, Jinxing ; Luo, Quan ; Yu, Shuangjiang ; Sun, Hongcheng ; Xu, Jiayun ; Liu, Junqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-dc8dd09a8984f78ea1038979cae8f420345287d3b4c3358666b2f120909cd69c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antiinfectives and antibacterials</topic><topic>Aromatic compounds</topic><topic>Bacterial diseases</topic><topic>Cytotoxicity</topic><topic>Encapsulation</topic><topic>Free radicals</topic><topic>Glucose oxidase</topic><topic>Hydrogen peroxide</topic><topic>Hydroxyl radicals</topic><topic>Iron oxides</topic><topic>Mammalian cells</topic><topic>Nanoparticles</topic><topic>Polymers</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Zang, Mingsong</creatorcontrib><creatorcontrib>Hou, Jinxing</creatorcontrib><creatorcontrib>Luo, Quan</creatorcontrib><creatorcontrib>Yu, Shuangjiang</creatorcontrib><creatorcontrib>Sun, Hongcheng</creatorcontrib><creatorcontrib>Xu, Jiayun</creatorcontrib><creatorcontrib>Liu, Junqiu</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fei</au><au>Zang, Mingsong</au><au>Hou, Jinxing</au><au>Luo, Quan</au><au>Yu, Shuangjiang</au><au>Sun, Hongcheng</au><au>Xu, Jiayun</au><au>Liu, Junqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cascade catalytic nanoplatform constructed by laterally-functionalized pillar[5]arenes for antibacterial chemodynamic therapy</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><date>2021-06-30</date><risdate>2021</risdate><volume>9</volume><issue>25</issue><spage>569</spage><epage>575</epage><pages>569-575</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Chemodynamic therapy (CDT) is an emerging approach to overcome bacterial infections that can efficiently convert hydrogen peroxide (H 2 O 2 ) to generate highly toxic hydroxyl radicals (&amp;z.rad;OH). How to develop safe and effective CDT-based strategies is in high demand but challenging. Herein, a cascade catalytic nanoplatform (GOx-NCs/Fe 3 O 4 ) was designed by absorbing glucose oxidase (GOx) onto the surface of covalent-assembled polymer capsules (NCs) encapsulating Fe 3 O 4 nanoparticles. With the presence of glucose, GOx could effectively catalyze it to produce H 2 O 2 and result in a decrease in pH value, both of which would assist the subsequent Fenton reaction. Encapsulated Fe 3 O 4 nanoparticles would subsequently trigger H 2 O 2 to produce &amp;z.rad;OH, which could make antibacterial CDT come true. More importantly, the polymer capsules exhibited little to no cytotoxicity towards mammalian cells, which might provide more opportunities and potential to apply in other fields. A cascade catalytic nanoplatform was established for effective chemodynamic antibacterial therapy.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1tb00868d</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0533-171X</orcidid><orcidid>https://orcid.org/0000-0003-0943-991X</orcidid><orcidid>https://orcid.org/0000-0002-3231-2039</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2021-06, Vol.9 (25), p.569-575
issn 2050-750X
2050-7518
language eng
recordid cdi_rsc_primary_d1tb00868d
source Royal Society Of Chemistry Journals 2008-
subjects Antiinfectives and antibacterials
Aromatic compounds
Bacterial diseases
Cytotoxicity
Encapsulation
Free radicals
Glucose oxidase
Hydrogen peroxide
Hydroxyl radicals
Iron oxides
Mammalian cells
Nanoparticles
Polymers
Toxicity
title Cascade catalytic nanoplatform constructed by laterally-functionalized pillar[5]arenes for antibacterial chemodynamic therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cascade%20catalytic%20nanoplatform%20constructed%20by%20laterally-functionalized%20pillar%5B5%5Darenes%20for%20antibacterial%20chemodynamic%20therapy&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Li,%20Fei&rft.date=2021-06-30&rft.volume=9&rft.issue=25&rft.spage=569&rft.epage=575&rft.pages=569-575&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d1tb00868d&rft_dat=%3Cproquest_rsc_p%3E2546530925%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546530925&rft_id=info:pmid/&rfr_iscdi=true