Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni-Fe-Al-Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis
Development of an efficient and stable electrocatalyst for the oxygen evolution reaction (OER) is crucial to generate hydrogen via water splitting as a sustainable fuel. Nickel iron layered double hydroxides (NF-LDHs) are considered the most promising electrocatalysts for alkaline water oxidation am...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-12, Vol.9 (48), p.27332-27346 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27346 |
---|---|
container_issue | 48 |
container_start_page | 27332 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 9 |
creator | Enkhtuvshin, Enkhbayar Kim, Kang Min Kim, Young-Kwang Mihn, Sungwook Kim, So Jung Jung, Sun Young Thu Thao, Nguyen Thi Ali, Ghulam Akbar, Muhammad Chung, Kyung Yoon Chae, Keun Hwa Kang, Sukhyun Lee, Taeg Woo Kim, Hyung Giun Choi, Seunggun Han, HyukSu |
description | Development of an efficient and stable electrocatalyst for the oxygen evolution reaction (OER) is crucial to generate hydrogen
via
water splitting as a sustainable fuel. Nickel iron layered double hydroxides (NF-LDHs) are considered the most promising electrocatalysts for alkaline water oxidation among various low-cost transition metal-based electrocatalysts although exact mechanisms are still on debate. Herein, we disclose that quaternary multimetallic Ni-Fe-Al-Co LDHs (NFAC-MELDHs) function as one of the best catalysts for alkaline as well as seawater oxidation due to the synergetic effects among the four different redox-flexible metals. The multimetallic Ni-Fe-Al-Co LDHs are prepared
via
the metal-organic framework (MOF)-derived electrochemical incorporation of fourth transition metal (Co) into ternary Ni-Fe-Al LDHs grown by a hydrothermal reaction. Moreover, we reveal an exact electrocatalytic mechanism for the OER in NFAC-MELDHs
via ex situ
spectroscopies in combination with density functional theory (DFT) calculations. Redox-flexible Fe is identified with a real active site in synergy with the neighboring metals stabilizing adsorption of oxygen intermediates and simultaneously facilitating charge transfer. In consequence, NFAC-MELDHs exhibit one of the lowest overpotentials of 220 and 280 mV for affording a current density of 100 mA cm
−2
in alkaline and simulating seawater solutions, respectively. More importantly, activity and stability merits in electrocatalysis for the OER are improved in the sequence of unary, binary, ternary, and quaternary LDHs, implying that catalyst design using multimetals for LDHs is a highly promising strategy.
Quaternary multimetallic LDHs have been developed through a facile metal-organic-framework derived electrochemical activation process. Ni-Fe-Al-Co quaternary LDHs show one of the best OER performances in alkaline and seawater electrolytes. |
doi_str_mv | 10.1039/d1ta07126b |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1ta07126b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609787838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-7f3ee703f2ba482d61e01122c737871add9bf98c267e9e275a65d6f7afc497f13</originalsourceid><addsrcrecordid>eNpFkU9vGyEQxVdVItVKfOm9ElJukbYB1l7g6Dr_KkXNoe55xcLg4mBwAKe7-U75jsV1lc5lRnq_9-bwquoTwV8IbsSVJlliRmjbf6gmFM9xzWaiPXm_Of9YTVPa4DIc41aISfX2I8veOvtq_RqFYVyDR9ZniFvQVmZIKHgUQYehNg4G2ztAUmX7AijZg2w92u5dtlvI0jmr0Hdb30K9cPUyICdHKGakw_5g_DXqGAarS4QPuphNiAgGBc6Bz0i6J-msP6gaJZC_y_-iO1A5Bjcmm86rUyNdgum_fVb9vL1ZLe_rh8e7b8vFQ60oJ7lmpgFguDG0lzNOdUsAE0KpYg3jjEitRW8EV7RlIICyuWznujVMGjUTzJDmrLo45u5ieN5Dyt0m7KMvLzvaYlFCeMMLdXmkVAwpRTDdLtqtjGNHcHdopLsmq8XfRr4W-PMRjkm9c_8ba_4AODmMKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609787838</pqid></control><display><type>article</type><title>Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni-Fe-Al-Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Enkhtuvshin, Enkhbayar ; Kim, Kang Min ; Kim, Young-Kwang ; Mihn, Sungwook ; Kim, So Jung ; Jung, Sun Young ; Thu Thao, Nguyen Thi ; Ali, Ghulam ; Akbar, Muhammad ; Chung, Kyung Yoon ; Chae, Keun Hwa ; Kang, Sukhyun ; Lee, Taeg Woo ; Kim, Hyung Giun ; Choi, Seunggun ; Han, HyukSu</creator><creatorcontrib>Enkhtuvshin, Enkhbayar ; Kim, Kang Min ; Kim, Young-Kwang ; Mihn, Sungwook ; Kim, So Jung ; Jung, Sun Young ; Thu Thao, Nguyen Thi ; Ali, Ghulam ; Akbar, Muhammad ; Chung, Kyung Yoon ; Chae, Keun Hwa ; Kang, Sukhyun ; Lee, Taeg Woo ; Kim, Hyung Giun ; Choi, Seunggun ; Han, HyukSu</creatorcontrib><description>Development of an efficient and stable electrocatalyst for the oxygen evolution reaction (OER) is crucial to generate hydrogen
via
water splitting as a sustainable fuel. Nickel iron layered double hydroxides (NF-LDHs) are considered the most promising electrocatalysts for alkaline water oxidation among various low-cost transition metal-based electrocatalysts although exact mechanisms are still on debate. Herein, we disclose that quaternary multimetallic Ni-Fe-Al-Co LDHs (NFAC-MELDHs) function as one of the best catalysts for alkaline as well as seawater oxidation due to the synergetic effects among the four different redox-flexible metals. The multimetallic Ni-Fe-Al-Co LDHs are prepared
via
the metal-organic framework (MOF)-derived electrochemical incorporation of fourth transition metal (Co) into ternary Ni-Fe-Al LDHs grown by a hydrothermal reaction. Moreover, we reveal an exact electrocatalytic mechanism for the OER in NFAC-MELDHs
via ex situ
spectroscopies in combination with density functional theory (DFT) calculations. Redox-flexible Fe is identified with a real active site in synergy with the neighboring metals stabilizing adsorption of oxygen intermediates and simultaneously facilitating charge transfer. In consequence, NFAC-MELDHs exhibit one of the lowest overpotentials of 220 and 280 mV for affording a current density of 100 mA cm
−2
in alkaline and simulating seawater solutions, respectively. More importantly, activity and stability merits in electrocatalysis for the OER are improved in the sequence of unary, binary, ternary, and quaternary LDHs, implying that catalyst design using multimetals for LDHs is a highly promising strategy.
Quaternary multimetallic LDHs have been developed through a facile metal-organic-framework derived electrochemical activation process. Ni-Fe-Al-Co quaternary LDHs show one of the best OER performances in alkaline and seawater electrolytes.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta07126b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkaline water ; Aluminum ; Catalysts ; Charge transfer ; Chemical analysis ; Cobalt ; Density functional theory ; Electrocatalysts ; Electrochemistry ; Electrolysis ; Heavy metals ; Hydrothermal reactions ; Hydroxides ; Intermediates ; Metal-organic frameworks ; Metals ; Nickel ; Nickel iron ; Oxidation ; Oxygen ; Oxygen evolution reactions ; Seawater ; Transition metals ; Water analysis ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-12, Vol.9 (48), p.27332-27346</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-7f3ee703f2ba482d61e01122c737871add9bf98c267e9e275a65d6f7afc497f13</citedby><cites>FETCH-LOGICAL-c281t-7f3ee703f2ba482d61e01122c737871add9bf98c267e9e275a65d6f7afc497f13</cites><orcidid>0000-0003-2815-6667 ; 0000-0003-3894-670X ; 0000-0002-0403-2224 ; 0000-0001-5515-8399 ; 0000-0001-7230-612X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Enkhtuvshin, Enkhbayar</creatorcontrib><creatorcontrib>Kim, Kang Min</creatorcontrib><creatorcontrib>Kim, Young-Kwang</creatorcontrib><creatorcontrib>Mihn, Sungwook</creatorcontrib><creatorcontrib>Kim, So Jung</creatorcontrib><creatorcontrib>Jung, Sun Young</creatorcontrib><creatorcontrib>Thu Thao, Nguyen Thi</creatorcontrib><creatorcontrib>Ali, Ghulam</creatorcontrib><creatorcontrib>Akbar, Muhammad</creatorcontrib><creatorcontrib>Chung, Kyung Yoon</creatorcontrib><creatorcontrib>Chae, Keun Hwa</creatorcontrib><creatorcontrib>Kang, Sukhyun</creatorcontrib><creatorcontrib>Lee, Taeg Woo</creatorcontrib><creatorcontrib>Kim, Hyung Giun</creatorcontrib><creatorcontrib>Choi, Seunggun</creatorcontrib><creatorcontrib>Han, HyukSu</creatorcontrib><title>Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni-Fe-Al-Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Development of an efficient and stable electrocatalyst for the oxygen evolution reaction (OER) is crucial to generate hydrogen
via
water splitting as a sustainable fuel. Nickel iron layered double hydroxides (NF-LDHs) are considered the most promising electrocatalysts for alkaline water oxidation among various low-cost transition metal-based electrocatalysts although exact mechanisms are still on debate. Herein, we disclose that quaternary multimetallic Ni-Fe-Al-Co LDHs (NFAC-MELDHs) function as one of the best catalysts for alkaline as well as seawater oxidation due to the synergetic effects among the four different redox-flexible metals. The multimetallic Ni-Fe-Al-Co LDHs are prepared
via
the metal-organic framework (MOF)-derived electrochemical incorporation of fourth transition metal (Co) into ternary Ni-Fe-Al LDHs grown by a hydrothermal reaction. Moreover, we reveal an exact electrocatalytic mechanism for the OER in NFAC-MELDHs
via ex situ
spectroscopies in combination with density functional theory (DFT) calculations. Redox-flexible Fe is identified with a real active site in synergy with the neighboring metals stabilizing adsorption of oxygen intermediates and simultaneously facilitating charge transfer. In consequence, NFAC-MELDHs exhibit one of the lowest overpotentials of 220 and 280 mV for affording a current density of 100 mA cm
−2
in alkaline and simulating seawater solutions, respectively. More importantly, activity and stability merits in electrocatalysis for the OER are improved in the sequence of unary, binary, ternary, and quaternary LDHs, implying that catalyst design using multimetals for LDHs is a highly promising strategy.
Quaternary multimetallic LDHs have been developed through a facile metal-organic-framework derived electrochemical activation process. Ni-Fe-Al-Co quaternary LDHs show one of the best OER performances in alkaline and seawater electrolytes.</description><subject>Alkaline water</subject><subject>Aluminum</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemical analysis</subject><subject>Cobalt</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>Heavy metals</subject><subject>Hydrothermal reactions</subject><subject>Hydroxides</subject><subject>Intermediates</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Nickel</subject><subject>Nickel iron</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>Seawater</subject><subject>Transition metals</subject><subject>Water analysis</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkU9vGyEQxVdVItVKfOm9ElJukbYB1l7g6Dr_KkXNoe55xcLg4mBwAKe7-U75jsV1lc5lRnq_9-bwquoTwV8IbsSVJlliRmjbf6gmFM9xzWaiPXm_Of9YTVPa4DIc41aISfX2I8veOvtq_RqFYVyDR9ZniFvQVmZIKHgUQYehNg4G2ztAUmX7AijZg2w92u5dtlvI0jmr0Hdb30K9cPUyICdHKGakw_5g_DXqGAarS4QPuphNiAgGBc6Bz0i6J-msP6gaJZC_y_-iO1A5Bjcmm86rUyNdgum_fVb9vL1ZLe_rh8e7b8vFQ60oJ7lmpgFguDG0lzNOdUsAE0KpYg3jjEitRW8EV7RlIICyuWznujVMGjUTzJDmrLo45u5ieN5Dyt0m7KMvLzvaYlFCeMMLdXmkVAwpRTDdLtqtjGNHcHdopLsmq8XfRr4W-PMRjkm9c_8ba_4AODmMKg</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Enkhtuvshin, Enkhbayar</creator><creator>Kim, Kang Min</creator><creator>Kim, Young-Kwang</creator><creator>Mihn, Sungwook</creator><creator>Kim, So Jung</creator><creator>Jung, Sun Young</creator><creator>Thu Thao, Nguyen Thi</creator><creator>Ali, Ghulam</creator><creator>Akbar, Muhammad</creator><creator>Chung, Kyung Yoon</creator><creator>Chae, Keun Hwa</creator><creator>Kang, Sukhyun</creator><creator>Lee, Taeg Woo</creator><creator>Kim, Hyung Giun</creator><creator>Choi, Seunggun</creator><creator>Han, HyukSu</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2815-6667</orcidid><orcidid>https://orcid.org/0000-0003-3894-670X</orcidid><orcidid>https://orcid.org/0000-0002-0403-2224</orcidid><orcidid>https://orcid.org/0000-0001-5515-8399</orcidid><orcidid>https://orcid.org/0000-0001-7230-612X</orcidid></search><sort><creationdate>20211214</creationdate><title>Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni-Fe-Al-Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis</title><author>Enkhtuvshin, Enkhbayar ; Kim, Kang Min ; Kim, Young-Kwang ; Mihn, Sungwook ; Kim, So Jung ; Jung, Sun Young ; Thu Thao, Nguyen Thi ; Ali, Ghulam ; Akbar, Muhammad ; Chung, Kyung Yoon ; Chae, Keun Hwa ; Kang, Sukhyun ; Lee, Taeg Woo ; Kim, Hyung Giun ; Choi, Seunggun ; Han, HyukSu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-7f3ee703f2ba482d61e01122c737871add9bf98c267e9e275a65d6f7afc497f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alkaline water</topic><topic>Aluminum</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemical analysis</topic><topic>Cobalt</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>Heavy metals</topic><topic>Hydrothermal reactions</topic><topic>Hydroxides</topic><topic>Intermediates</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Nickel</topic><topic>Nickel iron</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>Seawater</topic><topic>Transition metals</topic><topic>Water analysis</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Enkhtuvshin, Enkhbayar</creatorcontrib><creatorcontrib>Kim, Kang Min</creatorcontrib><creatorcontrib>Kim, Young-Kwang</creatorcontrib><creatorcontrib>Mihn, Sungwook</creatorcontrib><creatorcontrib>Kim, So Jung</creatorcontrib><creatorcontrib>Jung, Sun Young</creatorcontrib><creatorcontrib>Thu Thao, Nguyen Thi</creatorcontrib><creatorcontrib>Ali, Ghulam</creatorcontrib><creatorcontrib>Akbar, Muhammad</creatorcontrib><creatorcontrib>Chung, Kyung Yoon</creatorcontrib><creatorcontrib>Chae, Keun Hwa</creatorcontrib><creatorcontrib>Kang, Sukhyun</creatorcontrib><creatorcontrib>Lee, Taeg Woo</creatorcontrib><creatorcontrib>Kim, Hyung Giun</creatorcontrib><creatorcontrib>Choi, Seunggun</creatorcontrib><creatorcontrib>Han, HyukSu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Enkhtuvshin, Enkhbayar</au><au>Kim, Kang Min</au><au>Kim, Young-Kwang</au><au>Mihn, Sungwook</au><au>Kim, So Jung</au><au>Jung, Sun Young</au><au>Thu Thao, Nguyen Thi</au><au>Ali, Ghulam</au><au>Akbar, Muhammad</au><au>Chung, Kyung Yoon</au><au>Chae, Keun Hwa</au><au>Kang, Sukhyun</au><au>Lee, Taeg Woo</au><au>Kim, Hyung Giun</au><au>Choi, Seunggun</au><au>Han, HyukSu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni-Fe-Al-Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-12-14</date><risdate>2021</risdate><volume>9</volume><issue>48</issue><spage>27332</spage><epage>27346</epage><pages>27332-27346</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Development of an efficient and stable electrocatalyst for the oxygen evolution reaction (OER) is crucial to generate hydrogen
via
water splitting as a sustainable fuel. Nickel iron layered double hydroxides (NF-LDHs) are considered the most promising electrocatalysts for alkaline water oxidation among various low-cost transition metal-based electrocatalysts although exact mechanisms are still on debate. Herein, we disclose that quaternary multimetallic Ni-Fe-Al-Co LDHs (NFAC-MELDHs) function as one of the best catalysts for alkaline as well as seawater oxidation due to the synergetic effects among the four different redox-flexible metals. The multimetallic Ni-Fe-Al-Co LDHs are prepared
via
the metal-organic framework (MOF)-derived electrochemical incorporation of fourth transition metal (Co) into ternary Ni-Fe-Al LDHs grown by a hydrothermal reaction. Moreover, we reveal an exact electrocatalytic mechanism for the OER in NFAC-MELDHs
via ex situ
spectroscopies in combination with density functional theory (DFT) calculations. Redox-flexible Fe is identified with a real active site in synergy with the neighboring metals stabilizing adsorption of oxygen intermediates and simultaneously facilitating charge transfer. In consequence, NFAC-MELDHs exhibit one of the lowest overpotentials of 220 and 280 mV for affording a current density of 100 mA cm
−2
in alkaline and simulating seawater solutions, respectively. More importantly, activity and stability merits in electrocatalysis for the OER are improved in the sequence of unary, binary, ternary, and quaternary LDHs, implying that catalyst design using multimetals for LDHs is a highly promising strategy.
Quaternary multimetallic LDHs have been developed through a facile metal-organic-framework derived electrochemical activation process. Ni-Fe-Al-Co quaternary LDHs show one of the best OER performances in alkaline and seawater electrolytes.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta07126b</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2815-6667</orcidid><orcidid>https://orcid.org/0000-0003-3894-670X</orcidid><orcidid>https://orcid.org/0000-0002-0403-2224</orcidid><orcidid>https://orcid.org/0000-0001-5515-8399</orcidid><orcidid>https://orcid.org/0000-0001-7230-612X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2021-12, Vol.9 (48), p.27332-27346 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_rsc_primary_d1ta07126b |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Alkaline water Aluminum Catalysts Charge transfer Chemical analysis Cobalt Density functional theory Electrocatalysts Electrochemistry Electrolysis Heavy metals Hydrothermal reactions Hydroxides Intermediates Metal-organic frameworks Metals Nickel Nickel iron Oxidation Oxygen Oxygen evolution reactions Seawater Transition metals Water analysis Water splitting |
title | Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni-Fe-Al-Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizing%20oxygen%20intermediates%20on%20redox-flexible%20active%20sites%20in%20multimetallic%20Ni-Fe-Al-Co%20layered%20double%20hydroxide%20anodes%20for%20excellent%20alkaline%20and%20seawater%20electrolysis&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Enkhtuvshin,%20Enkhbayar&rft.date=2021-12-14&rft.volume=9&rft.issue=48&rft.spage=27332&rft.epage=27346&rft.pages=27332-27346&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta07126b&rft_dat=%3Cproquest_rsc_p%3E2609787838%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609787838&rft_id=info:pmid/&rfr_iscdi=true |