Does the Seebeck coefficient of a single-molecule junction depend on the junction configuration?

A new experimental method for the simultaneous determination of the electric and thermoelectric properties of metal-molecule-metal junctions at the single-molecule level has been developed to test the effects of the junction configuration on the thermopower properties. The method is based on dynamic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-08, Vol.9 (32), p.17512-1752
Hauptverfasser: Vavrek, František, Butsyk, Olena, Kolivoška, Viliam, Nováková Lachmanová, Št pánka, Sebechlebská, Tá a, Šebera, Jakub, Gasior, Jind ich, Mészáros, Gábor, Hromadová, Magdaléna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1752
container_issue 32
container_start_page 17512
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Vavrek, František
Butsyk, Olena
Kolivoška, Viliam
Nováková Lachmanová, Št pánka
Sebechlebská, Tá a
Šebera, Jakub
Gasior, Jind ich
Mészáros, Gábor
Hromadová, Magdaléna
description A new experimental method for the simultaneous determination of the electric and thermoelectric properties of metal-molecule-metal junctions at the single-molecule level has been developed to test the effects of the junction configuration on the thermopower properties. The method is based on dynamic switching between (thermo)electric current and thermoelectric voltage measurements. Two model systems, 4,4′-bipyridine ( 1 ) and 4,4′-diaminostilbene ( 2 ), have been scrutinized. Single-molecule conductance ( G ) and thermopower ( S ) values were obtained for the two most probable junction configurations of 1 and 2 , each having two different conductance values, G H (high) and G L (low), where G H > G L . Thermopower values of S ( G H ) = −6.4 ± 1.5 μV K −1 and S ( G L ) = −7.0 ± 1.6 μV K −1 were obtained for the molecular junctions of 1 and values of S ( G H ) = +14.4 ± 3.5 μV K −1 and S ( G L ) = +10.4 ± 3.0 μV K −1 were obtained for the molecular junctions of 2 . The G H and S ( G H ) values for 1 and 2 are consistent with previously reported results. Thermopower values obtained simultaneously with conductance measurements for both configurations of 2 during junction evolution are reported for the first time. This work shows that, within experimental error, both S values are the same for each molecule, i.e. , S ( G H ) S ( G L ), and they do not depend on the molecular junction configuration. This is an important finding, which supports claims that thermopower is an intensive property of matter. DFT calculations of transmission functions combined with a non-equilibrium Green's function approach complete this study. It was shown that the thermopower of a single-molecule junction does not depend on the junction configuration.
doi_str_mv 10.1039/d1ta05324h
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1ta05324h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561896224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-86e6605261f76bbe7c81c98923f301584c5343ff33868bd39f9540bf77483f963</originalsourceid><addsrcrecordid>eNqNkc9LwzAUx4MoOOYu3oWAN6WaNG2anGR0_oKBB-e5tunL1tkls2kR_3vTVerVXPJe-HwT3icInVNyQwmTtyVtcxKzMNocoUlIYhIkkeTHYy3EKZo5tyV-CUK4lBP0vrDgcLsB_ApQgPrAyoLWlarAtNhqnGNXmXUNwc7WoLoa8LYzqq2swSXswZTYV31-PFbW6GrdNXnf3Z2hE53XDma_-xS9Pdyv0qdg-fL4nM6XgQoFbQPBgXMSh5zqhBcFJEpQJYUMmWaExiJSMYuY1owJLoqSSS3jiBQ68WMxLTmbosvh3n1jPztwbba1XWP8k1kYcyokD8PIU1cDpRrrXAM62zfVLm--M0qyXmK2oKv5QeKTh68H-AsKq12vRMEY8BK5YCQisvdJPS3-T6dVe9CT2s60PnoxRBunxsTfb7IfQjONxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561896224</pqid></control><display><type>article</type><title>Does the Seebeck coefficient of a single-molecule junction depend on the junction configuration?</title><source>Royal Society Of Chemistry Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Vavrek, František ; Butsyk, Olena ; Kolivoška, Viliam ; Nováková Lachmanová, Št pánka ; Sebechlebská, Tá a ; Šebera, Jakub ; Gasior, Jind ich ; Mészáros, Gábor ; Hromadová, Magdaléna</creator><creatorcontrib>Vavrek, František ; Butsyk, Olena ; Kolivoška, Viliam ; Nováková Lachmanová, Št pánka ; Sebechlebská, Tá a ; Šebera, Jakub ; Gasior, Jind ich ; Mészáros, Gábor ; Hromadová, Magdaléna</creatorcontrib><description>A new experimental method for the simultaneous determination of the electric and thermoelectric properties of metal-molecule-metal junctions at the single-molecule level has been developed to test the effects of the junction configuration on the thermopower properties. The method is based on dynamic switching between (thermo)electric current and thermoelectric voltage measurements. Two model systems, 4,4′-bipyridine ( 1 ) and 4,4′-diaminostilbene ( 2 ), have been scrutinized. Single-molecule conductance ( G ) and thermopower ( S ) values were obtained for the two most probable junction configurations of 1 and 2 , each having two different conductance values, G H (high) and G L (low), where G H &gt; G L . Thermopower values of S ( G H ) = −6.4 ± 1.5 μV K −1 and S ( G L ) = −7.0 ± 1.6 μV K −1 were obtained for the molecular junctions of 1 and values of S ( G H ) = +14.4 ± 3.5 μV K −1 and S ( G L ) = +10.4 ± 3.0 μV K −1 were obtained for the molecular junctions of 2 . The G H and S ( G H ) values for 1 and 2 are consistent with previously reported results. Thermopower values obtained simultaneously with conductance measurements for both configurations of 2 during junction evolution are reported for the first time. This work shows that, within experimental error, both S values are the same for each molecule, i.e. , S ( G H ) S ( G L ), and they do not depend on the molecular junction configuration. This is an important finding, which supports claims that thermopower is an intensive property of matter. DFT calculations of transmission functions combined with a non-equilibrium Green's function approach complete this study. It was shown that the thermopower of a single-molecule junction does not depend on the junction configuration.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta05324h</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Chemistry ; Chemistry, Physical ; Computer applications ; Conductance ; Configurations ; Electrical junctions ; Electrical measurement ; Energy &amp; Fuels ; Experimental methods ; Green's functions ; Materials Science ; Materials Science, Multidisciplinary ; Mathematical analysis ; Physical Sciences ; Quantum chemistry ; Science &amp; Technology ; Seebeck effect ; Technology ; Thermoelectricity</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-08, Vol.9 (32), p.17512-1752</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000683040900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c281t-86e6605261f76bbe7c81c98923f301584c5343ff33868bd39f9540bf77483f963</citedby><cites>FETCH-LOGICAL-c281t-86e6605261f76bbe7c81c98923f301584c5343ff33868bd39f9540bf77483f963</cites><orcidid>0000-0001-5671-5206 ; 0000-0002-3138-6917 ; 0000-0002-6832-7080 ; 0000-0003-0219-0672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Vavrek, František</creatorcontrib><creatorcontrib>Butsyk, Olena</creatorcontrib><creatorcontrib>Kolivoška, Viliam</creatorcontrib><creatorcontrib>Nováková Lachmanová, Št pánka</creatorcontrib><creatorcontrib>Sebechlebská, Tá a</creatorcontrib><creatorcontrib>Šebera, Jakub</creatorcontrib><creatorcontrib>Gasior, Jind ich</creatorcontrib><creatorcontrib>Mészáros, Gábor</creatorcontrib><creatorcontrib>Hromadová, Magdaléna</creatorcontrib><title>Does the Seebeck coefficient of a single-molecule junction depend on the junction configuration?</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><addtitle>J MATER CHEM A</addtitle><description>A new experimental method for the simultaneous determination of the electric and thermoelectric properties of metal-molecule-metal junctions at the single-molecule level has been developed to test the effects of the junction configuration on the thermopower properties. The method is based on dynamic switching between (thermo)electric current and thermoelectric voltage measurements. Two model systems, 4,4′-bipyridine ( 1 ) and 4,4′-diaminostilbene ( 2 ), have been scrutinized. Single-molecule conductance ( G ) and thermopower ( S ) values were obtained for the two most probable junction configurations of 1 and 2 , each having two different conductance values, G H (high) and G L (low), where G H &gt; G L . Thermopower values of S ( G H ) = −6.4 ± 1.5 μV K −1 and S ( G L ) = −7.0 ± 1.6 μV K −1 were obtained for the molecular junctions of 1 and values of S ( G H ) = +14.4 ± 3.5 μV K −1 and S ( G L ) = +10.4 ± 3.0 μV K −1 were obtained for the molecular junctions of 2 . The G H and S ( G H ) values for 1 and 2 are consistent with previously reported results. Thermopower values obtained simultaneously with conductance measurements for both configurations of 2 during junction evolution are reported for the first time. This work shows that, within experimental error, both S values are the same for each molecule, i.e. , S ( G H ) S ( G L ), and they do not depend on the molecular junction configuration. This is an important finding, which supports claims that thermopower is an intensive property of matter. DFT calculations of transmission functions combined with a non-equilibrium Green's function approach complete this study. It was shown that the thermopower of a single-molecule junction does not depend on the junction configuration.</description><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Computer applications</subject><subject>Conductance</subject><subject>Configurations</subject><subject>Electrical junctions</subject><subject>Electrical measurement</subject><subject>Energy &amp; Fuels</subject><subject>Experimental methods</subject><subject>Green's functions</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mathematical analysis</subject><subject>Physical Sciences</subject><subject>Quantum chemistry</subject><subject>Science &amp; Technology</subject><subject>Seebeck effect</subject><subject>Technology</subject><subject>Thermoelectricity</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkc9LwzAUx4MoOOYu3oWAN6WaNG2anGR0_oKBB-e5tunL1tkls2kR_3vTVerVXPJe-HwT3icInVNyQwmTtyVtcxKzMNocoUlIYhIkkeTHYy3EKZo5tyV-CUK4lBP0vrDgcLsB_ApQgPrAyoLWlarAtNhqnGNXmXUNwc7WoLoa8LYzqq2swSXswZTYV31-PFbW6GrdNXnf3Z2hE53XDma_-xS9Pdyv0qdg-fL4nM6XgQoFbQPBgXMSh5zqhBcFJEpQJYUMmWaExiJSMYuY1owJLoqSSS3jiBQ68WMxLTmbosvh3n1jPztwbba1XWP8k1kYcyokD8PIU1cDpRrrXAM62zfVLm--M0qyXmK2oKv5QeKTh68H-AsKq12vRMEY8BK5YCQisvdJPS3-T6dVe9CT2s60PnoxRBunxsTfb7IfQjONxA</recordid><startdate>20210828</startdate><enddate>20210828</enddate><creator>Vavrek, František</creator><creator>Butsyk, Olena</creator><creator>Kolivoška, Viliam</creator><creator>Nováková Lachmanová, Št pánka</creator><creator>Sebechlebská, Tá a</creator><creator>Šebera, Jakub</creator><creator>Gasior, Jind ich</creator><creator>Mészáros, Gábor</creator><creator>Hromadová, Magdaléna</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5671-5206</orcidid><orcidid>https://orcid.org/0000-0002-3138-6917</orcidid><orcidid>https://orcid.org/0000-0002-6832-7080</orcidid><orcidid>https://orcid.org/0000-0003-0219-0672</orcidid></search><sort><creationdate>20210828</creationdate><title>Does the Seebeck coefficient of a single-molecule junction depend on the junction configuration?</title><author>Vavrek, František ; Butsyk, Olena ; Kolivoška, Viliam ; Nováková Lachmanová, Št pánka ; Sebechlebská, Tá a ; Šebera, Jakub ; Gasior, Jind ich ; Mészáros, Gábor ; Hromadová, Magdaléna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-86e6605261f76bbe7c81c98923f301584c5343ff33868bd39f9540bf77483f963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Computer applications</topic><topic>Conductance</topic><topic>Configurations</topic><topic>Electrical junctions</topic><topic>Electrical measurement</topic><topic>Energy &amp; Fuels</topic><topic>Experimental methods</topic><topic>Green's functions</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mathematical analysis</topic><topic>Physical Sciences</topic><topic>Quantum chemistry</topic><topic>Science &amp; Technology</topic><topic>Seebeck effect</topic><topic>Technology</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vavrek, František</creatorcontrib><creatorcontrib>Butsyk, Olena</creatorcontrib><creatorcontrib>Kolivoška, Viliam</creatorcontrib><creatorcontrib>Nováková Lachmanová, Št pánka</creatorcontrib><creatorcontrib>Sebechlebská, Tá a</creatorcontrib><creatorcontrib>Šebera, Jakub</creatorcontrib><creatorcontrib>Gasior, Jind ich</creatorcontrib><creatorcontrib>Mészáros, Gábor</creatorcontrib><creatorcontrib>Hromadová, Magdaléna</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vavrek, František</au><au>Butsyk, Olena</au><au>Kolivoška, Viliam</au><au>Nováková Lachmanová, Št pánka</au><au>Sebechlebská, Tá a</au><au>Šebera, Jakub</au><au>Gasior, Jind ich</au><au>Mészáros, Gábor</au><au>Hromadová, Magdaléna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Does the Seebeck coefficient of a single-molecule junction depend on the junction configuration?</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><stitle>J MATER CHEM A</stitle><date>2021-08-28</date><risdate>2021</risdate><volume>9</volume><issue>32</issue><spage>17512</spage><epage>1752</epage><pages>17512-1752</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>A new experimental method for the simultaneous determination of the electric and thermoelectric properties of metal-molecule-metal junctions at the single-molecule level has been developed to test the effects of the junction configuration on the thermopower properties. The method is based on dynamic switching between (thermo)electric current and thermoelectric voltage measurements. Two model systems, 4,4′-bipyridine ( 1 ) and 4,4′-diaminostilbene ( 2 ), have been scrutinized. Single-molecule conductance ( G ) and thermopower ( S ) values were obtained for the two most probable junction configurations of 1 and 2 , each having two different conductance values, G H (high) and G L (low), where G H &gt; G L . Thermopower values of S ( G H ) = −6.4 ± 1.5 μV K −1 and S ( G L ) = −7.0 ± 1.6 μV K −1 were obtained for the molecular junctions of 1 and values of S ( G H ) = +14.4 ± 3.5 μV K −1 and S ( G L ) = +10.4 ± 3.0 μV K −1 were obtained for the molecular junctions of 2 . The G H and S ( G H ) values for 1 and 2 are consistent with previously reported results. Thermopower values obtained simultaneously with conductance measurements for both configurations of 2 during junction evolution are reported for the first time. This work shows that, within experimental error, both S values are the same for each molecule, i.e. , S ( G H ) S ( G L ), and they do not depend on the molecular junction configuration. This is an important finding, which supports claims that thermopower is an intensive property of matter. DFT calculations of transmission functions combined with a non-equilibrium Green's function approach complete this study. It was shown that the thermopower of a single-molecule junction does not depend on the junction configuration.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><doi>10.1039/d1ta05324h</doi><orcidid>https://orcid.org/0000-0001-5671-5206</orcidid><orcidid>https://orcid.org/0000-0002-3138-6917</orcidid><orcidid>https://orcid.org/0000-0002-6832-7080</orcidid><orcidid>https://orcid.org/0000-0003-0219-0672</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-08, Vol.9 (32), p.17512-1752
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_d1ta05324h
source Royal Society Of Chemistry Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Chemistry
Chemistry, Physical
Computer applications
Conductance
Configurations
Electrical junctions
Electrical measurement
Energy & Fuels
Experimental methods
Green's functions
Materials Science
Materials Science, Multidisciplinary
Mathematical analysis
Physical Sciences
Quantum chemistry
Science & Technology
Seebeck effect
Technology
Thermoelectricity
title Does the Seebeck coefficient of a single-molecule junction depend on the junction configuration?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T10%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Does%20the%20Seebeck%20coefficient%20of%20a%20single-molecule%20junction%20depend%20on%20the%20junction%20configuration?&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Vavrek,%20Franti%C5%A1ek&rft.date=2021-08-28&rft.volume=9&rft.issue=32&rft.spage=17512&rft.epage=1752&rft.pages=17512-1752&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta05324h&rft_dat=%3Cproquest_rsc_p%3E2561896224%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561896224&rft_id=info:pmid/&rfr_iscdi=true