Membrane technologies in toilet urine treatment for toilet urine resource utilization: a review

Membrane technologies have broad potential in methods for separating, collecting, storing, and utilizing urine collected from toilets. Recovering urine from toilets for resource utilization instead of treating it in a sewage treatment plant not only reduces extra energy consumption for the degradati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2021-11, Vol.11 (56), p.35525-35535
Hauptverfasser: Yu, Chengzhi, Yin, Wenjun, Yu, Zhenjiang, Chen, Jiabin, Huang, Rui, Zhou, Xuefei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35535
container_issue 56
container_start_page 35525
container_title RSC advances
container_volume 11
creator Yu, Chengzhi
Yin, Wenjun
Yu, Zhenjiang
Chen, Jiabin
Huang, Rui
Zhou, Xuefei
description Membrane technologies have broad potential in methods for separating, collecting, storing, and utilizing urine collected from toilets. Recovering urine from toilets for resource utilization instead of treating it in a sewage treatment plant not only reduces extra energy consumption for the degradation of N and P but also saves energy in chemical fertilizer production, which will contribute to carbon emission reduction of 12.19-17.82 kg kg N −1 in terms of N alone. Due to its high efficiency in terms of volume reduction, water recycling, nutrient recovery, and pollutant removal, membrane technology is a promising technology for resource utilization from urine collected from toilets. In this review, we divide membrane technologies for resource utilization from urine collected from toilets into four categories based on the driving force: external pressure-driven membrane technology, vapor pressure-driven membrane technology, chemical potential-driven membrane technology, and electric field-driven membrane technology. These technologies influence factors such as: recovery targets and mechanisms, reaction condition optimization, and process efficiency, and these are all discussed in this review. Finally, a toilet with source-separation is suggested. In the future, membrane technology research should focus on the practical application of source-separation toilets, membrane fouling prevention, and energy consumption evaluation. This review may provide theoretical support for the resource utilization of urine collected from toilets that is based on membrane technology. In this review, the membrane technologies used for the resource utilization of urine collected from toilets are divided into four categories based on their driving force.
doi_str_mv 10.1039/d1ra05816a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1ra05816a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599147267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-97851d64238cb4000ad7b38db6ee64d14862ff5a8c6e370d09629e81985152423</originalsourceid><addsrcrecordid>eNpVkc1LxDAQxYMo7qJ78a4UvAnVJE3TxIOw-A0rgug5pO3UjbSNJqmif73R1dXNJSHvN29eMgjtEHxIcCaPauI0zgXheg2NKWY8pZjL9X_nEZp4_4Tj4jmhnGyiUZYzmREhxkjdQFc63UMSoJr3trWPBnxi-iRY00JIBme-RAc6dNCHpLFuVXLg7eAqSIZgWvOhg7H9caLj_auBt2200ejWw-Rn30IPF-f3p1fp7Pby-nQ6SytGRUhlIXJSc0YzUZUsRtV1UWaiLjkAZzVhgtOmybWoOGQFrrHkVIIgMpblNJZtoZOF7_NQdlBXMarTrXp2ptPuXVlt1KrSm7l6tK9KYpYRiaPB_o-Bsy8D-KCe4rP6mFnRXErCCsqLSB0sqMpZ7x00yw4Eq695qDNyN_2exzTCe_8zLdHf34_A7gJwvlqqfwPNPgHZhZCV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599147267</pqid></control><display><type>article</type><title>Membrane technologies in toilet urine treatment for toilet urine resource utilization: a review</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Yu, Chengzhi ; Yin, Wenjun ; Yu, Zhenjiang ; Chen, Jiabin ; Huang, Rui ; Zhou, Xuefei</creator><creatorcontrib>Yu, Chengzhi ; Yin, Wenjun ; Yu, Zhenjiang ; Chen, Jiabin ; Huang, Rui ; Zhou, Xuefei</creatorcontrib><description>Membrane technologies have broad potential in methods for separating, collecting, storing, and utilizing urine collected from toilets. Recovering urine from toilets for resource utilization instead of treating it in a sewage treatment plant not only reduces extra energy consumption for the degradation of N and P but also saves energy in chemical fertilizer production, which will contribute to carbon emission reduction of 12.19-17.82 kg kg N −1 in terms of N alone. Due to its high efficiency in terms of volume reduction, water recycling, nutrient recovery, and pollutant removal, membrane technology is a promising technology for resource utilization from urine collected from toilets. In this review, we divide membrane technologies for resource utilization from urine collected from toilets into four categories based on the driving force: external pressure-driven membrane technology, vapor pressure-driven membrane technology, chemical potential-driven membrane technology, and electric field-driven membrane technology. These technologies influence factors such as: recovery targets and mechanisms, reaction condition optimization, and process efficiency, and these are all discussed in this review. Finally, a toilet with source-separation is suggested. In the future, membrane technology research should focus on the practical application of source-separation toilets, membrane fouling prevention, and energy consumption evaluation. This review may provide theoretical support for the resource utilization of urine collected from toilets that is based on membrane technology. In this review, the membrane technologies used for the resource utilization of urine collected from toilets are divided into four categories based on their driving force.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d1ra05816a</identifier><identifier>PMID: 35493188</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemical potential ; Chemistry ; Electric fields ; Emissions control ; Energy consumption ; External pressure ; Membranes ; Optimization ; Plumbing fixtures ; Pollutants ; Resource utilization ; Separation ; Sewage treatment plants ; Toilet facilities ; Toilets ; Urine ; Vapor pressure ; Water reuse</subject><ispartof>RSC advances, 2021-11, Vol.11 (56), p.35525-35535</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-97851d64238cb4000ad7b38db6ee64d14862ff5a8c6e370d09629e81985152423</citedby><cites>FETCH-LOGICAL-c428t-97851d64238cb4000ad7b38db6ee64d14862ff5a8c6e370d09629e81985152423</cites><orcidid>0000-0001-6521-0592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043190/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043190/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35493188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Chengzhi</creatorcontrib><creatorcontrib>Yin, Wenjun</creatorcontrib><creatorcontrib>Yu, Zhenjiang</creatorcontrib><creatorcontrib>Chen, Jiabin</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Zhou, Xuefei</creatorcontrib><title>Membrane technologies in toilet urine treatment for toilet urine resource utilization: a review</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Membrane technologies have broad potential in methods for separating, collecting, storing, and utilizing urine collected from toilets. Recovering urine from toilets for resource utilization instead of treating it in a sewage treatment plant not only reduces extra energy consumption for the degradation of N and P but also saves energy in chemical fertilizer production, which will contribute to carbon emission reduction of 12.19-17.82 kg kg N −1 in terms of N alone. Due to its high efficiency in terms of volume reduction, water recycling, nutrient recovery, and pollutant removal, membrane technology is a promising technology for resource utilization from urine collected from toilets. In this review, we divide membrane technologies for resource utilization from urine collected from toilets into four categories based on the driving force: external pressure-driven membrane technology, vapor pressure-driven membrane technology, chemical potential-driven membrane technology, and electric field-driven membrane technology. These technologies influence factors such as: recovery targets and mechanisms, reaction condition optimization, and process efficiency, and these are all discussed in this review. Finally, a toilet with source-separation is suggested. In the future, membrane technology research should focus on the practical application of source-separation toilets, membrane fouling prevention, and energy consumption evaluation. This review may provide theoretical support for the resource utilization of urine collected from toilets that is based on membrane technology. In this review, the membrane technologies used for the resource utilization of urine collected from toilets are divided into four categories based on their driving force.</description><subject>Chemical potential</subject><subject>Chemistry</subject><subject>Electric fields</subject><subject>Emissions control</subject><subject>Energy consumption</subject><subject>External pressure</subject><subject>Membranes</subject><subject>Optimization</subject><subject>Plumbing fixtures</subject><subject>Pollutants</subject><subject>Resource utilization</subject><subject>Separation</subject><subject>Sewage treatment plants</subject><subject>Toilet facilities</subject><subject>Toilets</subject><subject>Urine</subject><subject>Vapor pressure</subject><subject>Water reuse</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkc1LxDAQxYMo7qJ78a4UvAnVJE3TxIOw-A0rgug5pO3UjbSNJqmif73R1dXNJSHvN29eMgjtEHxIcCaPauI0zgXheg2NKWY8pZjL9X_nEZp4_4Tj4jmhnGyiUZYzmREhxkjdQFc63UMSoJr3trWPBnxi-iRY00JIBme-RAc6dNCHpLFuVXLg7eAqSIZgWvOhg7H9caLj_auBt2200ejWw-Rn30IPF-f3p1fp7Pby-nQ6SytGRUhlIXJSc0YzUZUsRtV1UWaiLjkAZzVhgtOmybWoOGQFrrHkVIIgMpblNJZtoZOF7_NQdlBXMarTrXp2ptPuXVlt1KrSm7l6tK9KYpYRiaPB_o-Bsy8D-KCe4rP6mFnRXErCCsqLSB0sqMpZ7x00yw4Eq695qDNyN_2exzTCe_8zLdHf34_A7gJwvlqqfwPNPgHZhZCV</recordid><startdate>20211103</startdate><enddate>20211103</enddate><creator>Yu, Chengzhi</creator><creator>Yin, Wenjun</creator><creator>Yu, Zhenjiang</creator><creator>Chen, Jiabin</creator><creator>Huang, Rui</creator><creator>Zhou, Xuefei</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6521-0592</orcidid></search><sort><creationdate>20211103</creationdate><title>Membrane technologies in toilet urine treatment for toilet urine resource utilization: a review</title><author>Yu, Chengzhi ; Yin, Wenjun ; Yu, Zhenjiang ; Chen, Jiabin ; Huang, Rui ; Zhou, Xuefei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-97851d64238cb4000ad7b38db6ee64d14862ff5a8c6e370d09629e81985152423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical potential</topic><topic>Chemistry</topic><topic>Electric fields</topic><topic>Emissions control</topic><topic>Energy consumption</topic><topic>External pressure</topic><topic>Membranes</topic><topic>Optimization</topic><topic>Plumbing fixtures</topic><topic>Pollutants</topic><topic>Resource utilization</topic><topic>Separation</topic><topic>Sewage treatment plants</topic><topic>Toilet facilities</topic><topic>Toilets</topic><topic>Urine</topic><topic>Vapor pressure</topic><topic>Water reuse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Chengzhi</creatorcontrib><creatorcontrib>Yin, Wenjun</creatorcontrib><creatorcontrib>Yu, Zhenjiang</creatorcontrib><creatorcontrib>Chen, Jiabin</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Zhou, Xuefei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Chengzhi</au><au>Yin, Wenjun</au><au>Yu, Zhenjiang</au><au>Chen, Jiabin</au><au>Huang, Rui</au><au>Zhou, Xuefei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane technologies in toilet urine treatment for toilet urine resource utilization: a review</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2021-11-03</date><risdate>2021</risdate><volume>11</volume><issue>56</issue><spage>35525</spage><epage>35535</epage><pages>35525-35535</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Membrane technologies have broad potential in methods for separating, collecting, storing, and utilizing urine collected from toilets. Recovering urine from toilets for resource utilization instead of treating it in a sewage treatment plant not only reduces extra energy consumption for the degradation of N and P but also saves energy in chemical fertilizer production, which will contribute to carbon emission reduction of 12.19-17.82 kg kg N −1 in terms of N alone. Due to its high efficiency in terms of volume reduction, water recycling, nutrient recovery, and pollutant removal, membrane technology is a promising technology for resource utilization from urine collected from toilets. In this review, we divide membrane technologies for resource utilization from urine collected from toilets into four categories based on the driving force: external pressure-driven membrane technology, vapor pressure-driven membrane technology, chemical potential-driven membrane technology, and electric field-driven membrane technology. These technologies influence factors such as: recovery targets and mechanisms, reaction condition optimization, and process efficiency, and these are all discussed in this review. Finally, a toilet with source-separation is suggested. In the future, membrane technology research should focus on the practical application of source-separation toilets, membrane fouling prevention, and energy consumption evaluation. This review may provide theoretical support for the resource utilization of urine collected from toilets that is based on membrane technology. In this review, the membrane technologies used for the resource utilization of urine collected from toilets are divided into four categories based on their driving force.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35493188</pmid><doi>10.1039/d1ra05816a</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6521-0592</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2021-11, Vol.11 (56), p.35525-35535
issn 2046-2069
2046-2069
language eng
recordid cdi_rsc_primary_d1ra05816a
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Chemical potential
Chemistry
Electric fields
Emissions control
Energy consumption
External pressure
Membranes
Optimization
Plumbing fixtures
Pollutants
Resource utilization
Separation
Sewage treatment plants
Toilet facilities
Toilets
Urine
Vapor pressure
Water reuse
title Membrane technologies in toilet urine treatment for toilet urine resource utilization: a review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A12%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane%20technologies%20in%20toilet%20urine%20treatment%20for%20toilet%20urine%20resource%20utilization:%20a%20review&rft.jtitle=RSC%20advances&rft.au=Yu,%20Chengzhi&rft.date=2021-11-03&rft.volume=11&rft.issue=56&rft.spage=35525&rft.epage=35535&rft.pages=35525-35535&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d1ra05816a&rft_dat=%3Cproquest_rsc_p%3E2599147267%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599147267&rft_id=info:pmid/35493188&rfr_iscdi=true