How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios

The use of magnetic nanoparticles (MNPs) to locally increase the temperature at the nanoscale under the remote application of alternating magnetic fields (magnetic particle hyperthermia, MHT) has become an important subject of nanomedicine multidisciplinary research, focusing among other topics on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2021-10, Vol.13 (37), p.15631-15646
Hauptverfasser: Gavilán, H, Simeonidis, K, Myrovali, E, Mazarío, E, Chubykalo-Fesenko, O, Chantrell, R, Balcells, Ll, Angelakeris, M, Morales, M. P, Serantes, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15646
container_issue 37
container_start_page 15631
container_title Nanoscale
container_volume 13
creator Gavilán, H
Simeonidis, K
Myrovali, E
Mazarío, E
Chubykalo-Fesenko, O
Chantrell, R
Balcells, Ll
Angelakeris, M
Morales, M. P
Serantes, D
description The use of magnetic nanoparticles (MNPs) to locally increase the temperature at the nanoscale under the remote application of alternating magnetic fields (magnetic particle hyperthermia, MHT) has become an important subject of nanomedicine multidisciplinary research, focusing among other topics on the optimization of the heating performance of MNPs and their assemblies under the effect of the magnetic field. We report experimental data of heat released by MNPs using a wide range of anisometric shapes and their assemblies in different media. We outline a basic theoretical investigation, which assists the interpretation of the experimental data, including the effect of the size, shape and assembly of MNPs on the MNPs' hysteresis loops and the maximum heat delivered. We report heat release data of anisometric MNPs, including nanodisks, spindles (elongated nanoparticles) and nanocubes, analysing, for a given shape, the size dependence. We study the MNPs either acting as individuals or assembled through a magnetic-field-assisted method. Thus, the physical geometrical arrangement of these anisometric particles, the magnetization switching and the heat release (by means of the determination of the specific adsorption rate, SAR values) under the application of AC fields have been analysed and compared in aqueous suspensions and after immobilization in agar matrix mimicking the tumour environment. The different nano-systems were analysed when dispersed at random or in assembled configurations. We report a systematic fall in the SAR for all anisometric MNPs randomly embedded in a viscous environment. However, certain anisometric shapes will have a less marked, an almost total preservation or even an increase in SAR when embedded in a viscous environment with certain orientation, in contrast to the measurements in water solution. Discrepancies between theoretical and experimental values reflect the complexity of the systems due to the interplay of different factors such as size, shape and nanoparticle assembly due to magnetic interactions. We demonstrate that magnetic assembly holds great potential for producing materials with high functional and structural diversity, as we transform our nanoscale building blocks (anisometric MNPs) into a material displaying enhanced SAR properties. We demonstrate that some assemblies of anisometric nanoparticles could be the ideal agents to optimize the response to external AC fields for magnetic fluid hyperthermia in viscous enviro
doi_str_mv 10.1039/d1nr03484g
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1nr03484g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578070227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-7269667deca054dca3e82f679f7b74be90a19e07bb9061c6b067a3dfeda12a443</originalsourceid><addsrcrecordid>eNpFkcFLwzAUh4Mobk4v3pWAN3GaNGnSHmXqJgwF0XNJm5ctY01q0inzr7e6OU_vB-_j9-B7CJ1Sck0Jy280dYEwnvHZHuonhJMhYzLZ32XBe-goxgUhImeCHaIe42kuaJb2kZ74TxztF1zhOFcNYOU0VjFCXS7X2Btcq5mD1lbYKecbFbq4hIhn9gNwsBFw67G2xkAA1-L5uoHQziHUVuFYgVPB-niMDoxaRjjZzgF6e7h_HU2G0-fx4-h2OqyYZO1QJiIXQmqoFEm5rhSDLDFC5kaWkpeQE0VzILIscyJoJUoipGLagFY0UZyzAbrY9DbBv68gtsXCr4LrThZJKjMiSZLIjrrcUFXwMQYwRRNsrcK6oKT4EVrc0aeXX6HjDj7fVq7KGvQO_TPYAWcbIMRqt_3_CPsGIhV7sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578070227</pqid></control><display><type>article</type><title>How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Gavilán, H ; Simeonidis, K ; Myrovali, E ; Mazarío, E ; Chubykalo-Fesenko, O ; Chantrell, R ; Balcells, Ll ; Angelakeris, M ; Morales, M. P ; Serantes, D</creator><creatorcontrib>Gavilán, H ; Simeonidis, K ; Myrovali, E ; Mazarío, E ; Chubykalo-Fesenko, O ; Chantrell, R ; Balcells, Ll ; Angelakeris, M ; Morales, M. P ; Serantes, D</creatorcontrib><description>The use of magnetic nanoparticles (MNPs) to locally increase the temperature at the nanoscale under the remote application of alternating magnetic fields (magnetic particle hyperthermia, MHT) has become an important subject of nanomedicine multidisciplinary research, focusing among other topics on the optimization of the heating performance of MNPs and their assemblies under the effect of the magnetic field. We report experimental data of heat released by MNPs using a wide range of anisometric shapes and their assemblies in different media. We outline a basic theoretical investigation, which assists the interpretation of the experimental data, including the effect of the size, shape and assembly of MNPs on the MNPs' hysteresis loops and the maximum heat delivered. We report heat release data of anisometric MNPs, including nanodisks, spindles (elongated nanoparticles) and nanocubes, analysing, for a given shape, the size dependence. We study the MNPs either acting as individuals or assembled through a magnetic-field-assisted method. Thus, the physical geometrical arrangement of these anisometric particles, the magnetization switching and the heat release (by means of the determination of the specific adsorption rate, SAR values) under the application of AC fields have been analysed and compared in aqueous suspensions and after immobilization in agar matrix mimicking the tumour environment. The different nano-systems were analysed when dispersed at random or in assembled configurations. We report a systematic fall in the SAR for all anisometric MNPs randomly embedded in a viscous environment. However, certain anisometric shapes will have a less marked, an almost total preservation or even an increase in SAR when embedded in a viscous environment with certain orientation, in contrast to the measurements in water solution. Discrepancies between theoretical and experimental values reflect the complexity of the systems due to the interplay of different factors such as size, shape and nanoparticle assembly due to magnetic interactions. We demonstrate that magnetic assembly holds great potential for producing materials with high functional and structural diversity, as we transform our nanoscale building blocks (anisometric MNPs) into a material displaying enhanced SAR properties. We demonstrate that some assemblies of anisometric nanoparticles could be the ideal agents to optimize the response to external AC fields for magnetic fluid hyperthermia in viscous environments.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr03484g</identifier><identifier>PMID: 34596185</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Assemblies ; Assembly ; Humans ; Hyperthermia ; Hyperthermia, Induced ; Hysteresis loops ; Magnetic Fields ; Magnetics ; Magnetite Nanoparticles ; Multidisciplinary research ; Nanoparticles ; Optimization ; Shape effects</subject><ispartof>Nanoscale, 2021-10, Vol.13 (37), p.15631-15646</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-7269667deca054dca3e82f679f7b74be90a19e07bb9061c6b067a3dfeda12a443</citedby><cites>FETCH-LOGICAL-c373t-7269667deca054dca3e82f679f7b74be90a19e07bb9061c6b067a3dfeda12a443</cites><orcidid>0000-0001-8235-0087 ; 0000-0002-3860-2133 ; 0000-0002-4081-1831 ; 0000-0003-0193-3470 ; 0000-0002-7290-7029 ; 0000-0001-5410-5615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34596185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gavilán, H</creatorcontrib><creatorcontrib>Simeonidis, K</creatorcontrib><creatorcontrib>Myrovali, E</creatorcontrib><creatorcontrib>Mazarío, E</creatorcontrib><creatorcontrib>Chubykalo-Fesenko, O</creatorcontrib><creatorcontrib>Chantrell, R</creatorcontrib><creatorcontrib>Balcells, Ll</creatorcontrib><creatorcontrib>Angelakeris, M</creatorcontrib><creatorcontrib>Morales, M. P</creatorcontrib><creatorcontrib>Serantes, D</creatorcontrib><title>How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The use of magnetic nanoparticles (MNPs) to locally increase the temperature at the nanoscale under the remote application of alternating magnetic fields (magnetic particle hyperthermia, MHT) has become an important subject of nanomedicine multidisciplinary research, focusing among other topics on the optimization of the heating performance of MNPs and their assemblies under the effect of the magnetic field. We report experimental data of heat released by MNPs using a wide range of anisometric shapes and their assemblies in different media. We outline a basic theoretical investigation, which assists the interpretation of the experimental data, including the effect of the size, shape and assembly of MNPs on the MNPs' hysteresis loops and the maximum heat delivered. We report heat release data of anisometric MNPs, including nanodisks, spindles (elongated nanoparticles) and nanocubes, analysing, for a given shape, the size dependence. We study the MNPs either acting as individuals or assembled through a magnetic-field-assisted method. Thus, the physical geometrical arrangement of these anisometric particles, the magnetization switching and the heat release (by means of the determination of the specific adsorption rate, SAR values) under the application of AC fields have been analysed and compared in aqueous suspensions and after immobilization in agar matrix mimicking the tumour environment. The different nano-systems were analysed when dispersed at random or in assembled configurations. We report a systematic fall in the SAR for all anisometric MNPs randomly embedded in a viscous environment. However, certain anisometric shapes will have a less marked, an almost total preservation or even an increase in SAR when embedded in a viscous environment with certain orientation, in contrast to the measurements in water solution. Discrepancies between theoretical and experimental values reflect the complexity of the systems due to the interplay of different factors such as size, shape and nanoparticle assembly due to magnetic interactions. We demonstrate that magnetic assembly holds great potential for producing materials with high functional and structural diversity, as we transform our nanoscale building blocks (anisometric MNPs) into a material displaying enhanced SAR properties. We demonstrate that some assemblies of anisometric nanoparticles could be the ideal agents to optimize the response to external AC fields for magnetic fluid hyperthermia in viscous environments.</description><subject>Assemblies</subject><subject>Assembly</subject><subject>Humans</subject><subject>Hyperthermia</subject><subject>Hyperthermia, Induced</subject><subject>Hysteresis loops</subject><subject>Magnetic Fields</subject><subject>Magnetics</subject><subject>Magnetite Nanoparticles</subject><subject>Multidisciplinary research</subject><subject>Nanoparticles</subject><subject>Optimization</subject><subject>Shape effects</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkcFLwzAUh4Mobk4v3pWAN3GaNGnSHmXqJgwF0XNJm5ctY01q0inzr7e6OU_vB-_j9-B7CJ1Sck0Jy280dYEwnvHZHuonhJMhYzLZ32XBe-goxgUhImeCHaIe42kuaJb2kZ74TxztF1zhOFcNYOU0VjFCXS7X2Btcq5mD1lbYKecbFbq4hIhn9gNwsBFw67G2xkAA1-L5uoHQziHUVuFYgVPB-niMDoxaRjjZzgF6e7h_HU2G0-fx4-h2OqyYZO1QJiIXQmqoFEm5rhSDLDFC5kaWkpeQE0VzILIscyJoJUoipGLagFY0UZyzAbrY9DbBv68gtsXCr4LrThZJKjMiSZLIjrrcUFXwMQYwRRNsrcK6oKT4EVrc0aeXX6HjDj7fVq7KGvQO_TPYAWcbIMRqt_3_CPsGIhV7sg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Gavilán, H</creator><creator>Simeonidis, K</creator><creator>Myrovali, E</creator><creator>Mazarío, E</creator><creator>Chubykalo-Fesenko, O</creator><creator>Chantrell, R</creator><creator>Balcells, Ll</creator><creator>Angelakeris, M</creator><creator>Morales, M. P</creator><creator>Serantes, D</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8235-0087</orcidid><orcidid>https://orcid.org/0000-0002-3860-2133</orcidid><orcidid>https://orcid.org/0000-0002-4081-1831</orcidid><orcidid>https://orcid.org/0000-0003-0193-3470</orcidid><orcidid>https://orcid.org/0000-0002-7290-7029</orcidid><orcidid>https://orcid.org/0000-0001-5410-5615</orcidid></search><sort><creationdate>20211001</creationdate><title>How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios</title><author>Gavilán, H ; Simeonidis, K ; Myrovali, E ; Mazarío, E ; Chubykalo-Fesenko, O ; Chantrell, R ; Balcells, Ll ; Angelakeris, M ; Morales, M. P ; Serantes, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-7269667deca054dca3e82f679f7b74be90a19e07bb9061c6b067a3dfeda12a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Assemblies</topic><topic>Assembly</topic><topic>Humans</topic><topic>Hyperthermia</topic><topic>Hyperthermia, Induced</topic><topic>Hysteresis loops</topic><topic>Magnetic Fields</topic><topic>Magnetics</topic><topic>Magnetite Nanoparticles</topic><topic>Multidisciplinary research</topic><topic>Nanoparticles</topic><topic>Optimization</topic><topic>Shape effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavilán, H</creatorcontrib><creatorcontrib>Simeonidis, K</creatorcontrib><creatorcontrib>Myrovali, E</creatorcontrib><creatorcontrib>Mazarío, E</creatorcontrib><creatorcontrib>Chubykalo-Fesenko, O</creatorcontrib><creatorcontrib>Chantrell, R</creatorcontrib><creatorcontrib>Balcells, Ll</creatorcontrib><creatorcontrib>Angelakeris, M</creatorcontrib><creatorcontrib>Morales, M. P</creatorcontrib><creatorcontrib>Serantes, D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gavilán, H</au><au>Simeonidis, K</au><au>Myrovali, E</au><au>Mazarío, E</au><au>Chubykalo-Fesenko, O</au><au>Chantrell, R</au><au>Balcells, Ll</au><au>Angelakeris, M</au><au>Morales, M. P</au><au>Serantes, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>13</volume><issue>37</issue><spage>15631</spage><epage>15646</epage><pages>15631-15646</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The use of magnetic nanoparticles (MNPs) to locally increase the temperature at the nanoscale under the remote application of alternating magnetic fields (magnetic particle hyperthermia, MHT) has become an important subject of nanomedicine multidisciplinary research, focusing among other topics on the optimization of the heating performance of MNPs and their assemblies under the effect of the magnetic field. We report experimental data of heat released by MNPs using a wide range of anisometric shapes and their assemblies in different media. We outline a basic theoretical investigation, which assists the interpretation of the experimental data, including the effect of the size, shape and assembly of MNPs on the MNPs' hysteresis loops and the maximum heat delivered. We report heat release data of anisometric MNPs, including nanodisks, spindles (elongated nanoparticles) and nanocubes, analysing, for a given shape, the size dependence. We study the MNPs either acting as individuals or assembled through a magnetic-field-assisted method. Thus, the physical geometrical arrangement of these anisometric particles, the magnetization switching and the heat release (by means of the determination of the specific adsorption rate, SAR values) under the application of AC fields have been analysed and compared in aqueous suspensions and after immobilization in agar matrix mimicking the tumour environment. The different nano-systems were analysed when dispersed at random or in assembled configurations. We report a systematic fall in the SAR for all anisometric MNPs randomly embedded in a viscous environment. However, certain anisometric shapes will have a less marked, an almost total preservation or even an increase in SAR when embedded in a viscous environment with certain orientation, in contrast to the measurements in water solution. Discrepancies between theoretical and experimental values reflect the complexity of the systems due to the interplay of different factors such as size, shape and nanoparticle assembly due to magnetic interactions. We demonstrate that magnetic assembly holds great potential for producing materials with high functional and structural diversity, as we transform our nanoscale building blocks (anisometric MNPs) into a material displaying enhanced SAR properties. We demonstrate that some assemblies of anisometric nanoparticles could be the ideal agents to optimize the response to external AC fields for magnetic fluid hyperthermia in viscous environments.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34596185</pmid><doi>10.1039/d1nr03484g</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8235-0087</orcidid><orcidid>https://orcid.org/0000-0002-3860-2133</orcidid><orcidid>https://orcid.org/0000-0002-4081-1831</orcidid><orcidid>https://orcid.org/0000-0003-0193-3470</orcidid><orcidid>https://orcid.org/0000-0002-7290-7029</orcidid><orcidid>https://orcid.org/0000-0001-5410-5615</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2021-10, Vol.13 (37), p.15631-15646
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_d1nr03484g
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Assemblies
Assembly
Humans
Hyperthermia
Hyperthermia, Induced
Hysteresis loops
Magnetic Fields
Magnetics
Magnetite Nanoparticles
Multidisciplinary research
Nanoparticles
Optimization
Shape effects
title How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20size,%20shape%20and%20assembly%20of%20magnetic%20nanoparticles%20give%20rise%20to%20different%20hyperthermia%20scenarios&rft.jtitle=Nanoscale&rft.au=Gavil%C3%A1n,%20H&rft.date=2021-10-01&rft.volume=13&rft.issue=37&rft.spage=15631&rft.epage=15646&rft.pages=15631-15646&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr03484g&rft_dat=%3Cproquest_rsc_p%3E2578070227%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578070227&rft_id=info:pmid/34596185&rfr_iscdi=true