Carbon-MEMS based rectangular channel microarrays embedded pencil trace for high rate and high-performance lithium-ion battery application
The miniaturization of a lithium-ion battery has been an aspiration in portable electronic devices and a possible method of implementation is by changing the electrode configuration from a 2D system to a 3D one. A carbon microelectromechanical system is a plausible execution of lithium-ion storage f...
Gespeichert in:
Veröffentlicht in: | Materials advances 2021-11, Vol.2 (23), p.7741-775 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 775 |
---|---|
container_issue | 23 |
container_start_page | 7741 |
container_title | Materials advances |
container_volume | 2 |
creator | Gangadharan, Ananya Kali, Suresh Mamidi, Suresh Pathak, Anil D Sharma, Chandra S |
description | The miniaturization of a lithium-ion battery has been an aspiration in portable electronic devices and a possible method of implementation is by changing the electrode configuration from a 2D system to a 3D one. A carbon microelectromechanical system is a plausible execution of lithium-ion storage from 2D carbon films to 3D structures. However, the use of semiconducting silicon as a substrate for 3D structures and dendrite formation are hurdles. The present work describes the fabrication of 3D carbon rectangular channels on a pencil-traced stainless steel current collector and its utilization as the anode in a lithium-ion battery. Detailed physical and electrochemical studies demonstrate the advantage of this electrode in terms of reversible storage capacity and the establishment of a low resistance path for an electrochemical reaction. The cell exhibits an extraordinary capacity of 2000 mA h g
−1
at 150 mA g
−1
and it retained a capacity of ∼400 mA h g
−1
even at 10 000 mA g
−1
after 1750 cycles. Also, the full-cell prototype further proves the potency of this electrode. Additionally, the time-dependent Li-ion concentration gradient across the 3D carbon rectangular channels is estimated using a diffusion-limited model. These simulation studies clearly suggest that Li-ion diffusion is more favorable in 3D carbon rectangular channels than in 2D films.
C-MEMS based rectangular channel microarrays anode for high performance Li-ion battery. |
doi_str_mv | 10.1039/d1ma00745a |
format | Article |
fullrecord | <record><control><sourceid>rsc_cross</sourceid><recordid>TN_cdi_rsc_primary_d1ma00745a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d1ma00745a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-4404cd9a45b7e112d47ea3af919caa829140519b27db8a7c73fd757cbc599f433</originalsourceid><addsrcrecordid>eNpNkDtPwzAQgC0EElXpwo7kGSlgx05dj1UpD6kVAzBHF9tpjBInOrtD_wK_mlAQMN3r053uI-SSsxvOhL61vAPGlCzghEzyuRBZIZk-_Zefk1mM74yxvOBc6_mEfKwAqz5k2_X2hVYQnaXoTIKw27eA1DQQgmtp5w32gAiHSF1XOWtHcHDB-JYmBONo3SNt_K6hCMlRCPZYZYPDcdJBGJHWp8bvu8z3YTyVksMDhWFovYE09i7IWQ1tdLOfOCVv9-vX1WO2eX54Wi03mckXOmVSMmmsBllUynGeW6kcCKg11wZgkWsuWcF1lStbLUAZJWqrCmUqU2hdSyGm5Pp77_hSjOjqckDfAR5KzsovkeUd3y6PIpcjfPUNYzS_3J9o8Qkl8XJr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Carbon-MEMS based rectangular channel microarrays embedded pencil trace for high rate and high-performance lithium-ion battery application</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gangadharan, Ananya ; Kali, Suresh ; Mamidi, Suresh ; Pathak, Anil D ; Sharma, Chandra S</creator><creatorcontrib>Gangadharan, Ananya ; Kali, Suresh ; Mamidi, Suresh ; Pathak, Anil D ; Sharma, Chandra S</creatorcontrib><description>The miniaturization of a lithium-ion battery has been an aspiration in portable electronic devices and a possible method of implementation is by changing the electrode configuration from a 2D system to a 3D one. A carbon microelectromechanical system is a plausible execution of lithium-ion storage from 2D carbon films to 3D structures. However, the use of semiconducting silicon as a substrate for 3D structures and dendrite formation are hurdles. The present work describes the fabrication of 3D carbon rectangular channels on a pencil-traced stainless steel current collector and its utilization as the anode in a lithium-ion battery. Detailed physical and electrochemical studies demonstrate the advantage of this electrode in terms of reversible storage capacity and the establishment of a low resistance path for an electrochemical reaction. The cell exhibits an extraordinary capacity of 2000 mA h g
−1
at 150 mA g
−1
and it retained a capacity of ∼400 mA h g
−1
even at 10 000 mA g
−1
after 1750 cycles. Also, the full-cell prototype further proves the potency of this electrode. Additionally, the time-dependent Li-ion concentration gradient across the 3D carbon rectangular channels is estimated using a diffusion-limited model. These simulation studies clearly suggest that Li-ion diffusion is more favorable in 3D carbon rectangular channels than in 2D films.
C-MEMS based rectangular channel microarrays anode for high performance Li-ion battery.</description><identifier>ISSN: 2633-5409</identifier><identifier>EISSN: 2633-5409</identifier><identifier>DOI: 10.1039/d1ma00745a</identifier><language>eng</language><ispartof>Materials advances, 2021-11, Vol.2 (23), p.7741-775</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-4404cd9a45b7e112d47ea3af919caa829140519b27db8a7c73fd757cbc599f433</citedby><cites>FETCH-LOGICAL-c289t-4404cd9a45b7e112d47ea3af919caa829140519b27db8a7c73fd757cbc599f433</cites><orcidid>0000-0001-7159-721X ; 0000-0003-3821-1471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Gangadharan, Ananya</creatorcontrib><creatorcontrib>Kali, Suresh</creatorcontrib><creatorcontrib>Mamidi, Suresh</creatorcontrib><creatorcontrib>Pathak, Anil D</creatorcontrib><creatorcontrib>Sharma, Chandra S</creatorcontrib><title>Carbon-MEMS based rectangular channel microarrays embedded pencil trace for high rate and high-performance lithium-ion battery application</title><title>Materials advances</title><description>The miniaturization of a lithium-ion battery has been an aspiration in portable electronic devices and a possible method of implementation is by changing the electrode configuration from a 2D system to a 3D one. A carbon microelectromechanical system is a plausible execution of lithium-ion storage from 2D carbon films to 3D structures. However, the use of semiconducting silicon as a substrate for 3D structures and dendrite formation are hurdles. The present work describes the fabrication of 3D carbon rectangular channels on a pencil-traced stainless steel current collector and its utilization as the anode in a lithium-ion battery. Detailed physical and electrochemical studies demonstrate the advantage of this electrode in terms of reversible storage capacity and the establishment of a low resistance path for an electrochemical reaction. The cell exhibits an extraordinary capacity of 2000 mA h g
−1
at 150 mA g
−1
and it retained a capacity of ∼400 mA h g
−1
even at 10 000 mA g
−1
after 1750 cycles. Also, the full-cell prototype further proves the potency of this electrode. Additionally, the time-dependent Li-ion concentration gradient across the 3D carbon rectangular channels is estimated using a diffusion-limited model. These simulation studies clearly suggest that Li-ion diffusion is more favorable in 3D carbon rectangular channels than in 2D films.
C-MEMS based rectangular channel microarrays anode for high performance Li-ion battery.</description><issn>2633-5409</issn><issn>2633-5409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAQgC0EElXpwo7kGSlgx05dj1UpD6kVAzBHF9tpjBInOrtD_wK_mlAQMN3r053uI-SSsxvOhL61vAPGlCzghEzyuRBZIZk-_Zefk1mM74yxvOBc6_mEfKwAqz5k2_X2hVYQnaXoTIKw27eA1DQQgmtp5w32gAiHSF1XOWtHcHDB-JYmBONo3SNt_K6hCMlRCPZYZYPDcdJBGJHWp8bvu8z3YTyVksMDhWFovYE09i7IWQ1tdLOfOCVv9-vX1WO2eX54Wi03mckXOmVSMmmsBllUynGeW6kcCKg11wZgkWsuWcF1lStbLUAZJWqrCmUqU2hdSyGm5Pp77_hSjOjqckDfAR5KzsovkeUd3y6PIpcjfPUNYzS_3J9o8Qkl8XJr</recordid><startdate>20211129</startdate><enddate>20211129</enddate><creator>Gangadharan, Ananya</creator><creator>Kali, Suresh</creator><creator>Mamidi, Suresh</creator><creator>Pathak, Anil D</creator><creator>Sharma, Chandra S</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7159-721X</orcidid><orcidid>https://orcid.org/0000-0003-3821-1471</orcidid></search><sort><creationdate>20211129</creationdate><title>Carbon-MEMS based rectangular channel microarrays embedded pencil trace for high rate and high-performance lithium-ion battery application</title><author>Gangadharan, Ananya ; Kali, Suresh ; Mamidi, Suresh ; Pathak, Anil D ; Sharma, Chandra S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-4404cd9a45b7e112d47ea3af919caa829140519b27db8a7c73fd757cbc599f433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gangadharan, Ananya</creatorcontrib><creatorcontrib>Kali, Suresh</creatorcontrib><creatorcontrib>Mamidi, Suresh</creatorcontrib><creatorcontrib>Pathak, Anil D</creatorcontrib><creatorcontrib>Sharma, Chandra S</creatorcontrib><collection>CrossRef</collection><jtitle>Materials advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gangadharan, Ananya</au><au>Kali, Suresh</au><au>Mamidi, Suresh</au><au>Pathak, Anil D</au><au>Sharma, Chandra S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon-MEMS based rectangular channel microarrays embedded pencil trace for high rate and high-performance lithium-ion battery application</atitle><jtitle>Materials advances</jtitle><date>2021-11-29</date><risdate>2021</risdate><volume>2</volume><issue>23</issue><spage>7741</spage><epage>775</epage><pages>7741-775</pages><issn>2633-5409</issn><eissn>2633-5409</eissn><abstract>The miniaturization of a lithium-ion battery has been an aspiration in portable electronic devices and a possible method of implementation is by changing the electrode configuration from a 2D system to a 3D one. A carbon microelectromechanical system is a plausible execution of lithium-ion storage from 2D carbon films to 3D structures. However, the use of semiconducting silicon as a substrate for 3D structures and dendrite formation are hurdles. The present work describes the fabrication of 3D carbon rectangular channels on a pencil-traced stainless steel current collector and its utilization as the anode in a lithium-ion battery. Detailed physical and electrochemical studies demonstrate the advantage of this electrode in terms of reversible storage capacity and the establishment of a low resistance path for an electrochemical reaction. The cell exhibits an extraordinary capacity of 2000 mA h g
−1
at 150 mA g
−1
and it retained a capacity of ∼400 mA h g
−1
even at 10 000 mA g
−1
after 1750 cycles. Also, the full-cell prototype further proves the potency of this electrode. Additionally, the time-dependent Li-ion concentration gradient across the 3D carbon rectangular channels is estimated using a diffusion-limited model. These simulation studies clearly suggest that Li-ion diffusion is more favorable in 3D carbon rectangular channels than in 2D films.
C-MEMS based rectangular channel microarrays anode for high performance Li-ion battery.</abstract><doi>10.1039/d1ma00745a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7159-721X</orcidid><orcidid>https://orcid.org/0000-0003-3821-1471</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2633-5409 |
ispartof | Materials advances, 2021-11, Vol.2 (23), p.7741-775 |
issn | 2633-5409 2633-5409 |
language | eng |
recordid | cdi_rsc_primary_d1ma00745a |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Carbon-MEMS based rectangular channel microarrays embedded pencil trace for high rate and high-performance lithium-ion battery application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon-MEMS%20based%20rectangular%20channel%20microarrays%20embedded%20pencil%20trace%20for%20high%20rate%20and%20high-performance%20lithium-ion%20battery%20application&rft.jtitle=Materials%20advances&rft.au=Gangadharan,%20Ananya&rft.date=2021-11-29&rft.volume=2&rft.issue=23&rft.spage=7741&rft.epage=775&rft.pages=7741-775&rft.issn=2633-5409&rft.eissn=2633-5409&rft_id=info:doi/10.1039/d1ma00745a&rft_dat=%3Crsc_cross%3Ed1ma00745a%3C/rsc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |