Insights into the binding manners of an Fe doped MOF-808 in high-performance adsorption: a case of antimony adsorption
The full utilization of adsorption sites is crucial for adsorption technology. Metal-organic frameworks (MOFs), which are hotspot materials in environmental remediation, are not satisfactory in many cases because of their high specific surface area and relatively low adsorption capacity. In this wor...
Gespeichert in:
Veröffentlicht in: | Environmental science. Nano 2022-01, Vol.9 (1), p.254-264 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 264 |
---|---|
container_issue | 1 |
container_start_page | 254 |
container_title | Environmental science. Nano |
container_volume | 9 |
creator | Sun, Baihe Zhang, Kai Ren, Zhong Ni, Chenquan Hu, Huiqin Zhang, Xujing Yang, Liming Shao, Penghui Shi, Hui Yu, Kai Ding, Lin Peng, Yue Luo, Xubiao |
description | The full utilization of adsorption sites is crucial for adsorption technology. Metal-organic frameworks (MOFs), which are hotspot materials in environmental remediation, are not satisfactory in many cases because of their high specific surface area and relatively low adsorption capacity. In this work, a series of zirconium-iron bimetallic MOFs (Zr
x
Fe
(1−
x
)
-MOF-808) was prepared. The optimal material (Zr
0.8
Fe
0.2
-MOF-808) possesses superb adsorption capacities of 524 and 310 mg g
−1
for antimonate and antimonite, respectively. The carboxyl and hydroxyl groups were identified as the main adsorption sites by FTIR and XPS. The role of Fe in the adsorption process of Zr
0.8
Fe
0.2
-MOF-808 was further explored by DFT simulations, and four binding manners were discovered, consistent with the adsorption capacity data. Subsequently, application potential tests proved that the Zr
0.8
Fe
0.2
-MOF-808 shows good anti-interference ability, wide pH adaptability, and recyclability. Overall, this high-performance bimetallic MOF has been analyzed from the macrocosmic to the microcosmic, which provides certain support for the development of MOF modifications.
Fe doping results in the change of SBU and corresponding binding modes of MOF-808. |
doi_str_mv | 10.1039/d1en00878a |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1en00878a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621652196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-13cda7e42c168659066bc27f76fb8754bee0b69a19f2b9ab3bd68c8a9352ed9c3</originalsourceid><addsrcrecordid>eNpN0E1LAzEQBuAgCpbai3ch4E1YzSTdbOKt1FYL1V70vORr2y02WZOt0H_v6kr1NAPzzAy8CF0CuQXC5J0F5wkRhVAnaEBJDpkADqfHPmfnaJTSlhACQHPGiwH6XPhUrzdtwrVvA243Duva29qv8U5572LCocLK47nDNjTO4ufVPBNEdB5vus2scbEKscPGYWVTiE1bB3-PFTYquX67rXfBH_6NL9BZpd6TG_3WIXqbz16nT9ly9biYTpaZoQLaDJixqnBjaoALnkvCuTa0qApeaVHkY-0c0VwqkBXVUmmmLRdGKMly6qw0bIiu-7tNDB97l9pyG_bRdy9LyinwnILknbrplYkhpeiqson1TsVDCaT8jrZ8gNnLT7STDl_1OCZzdH_Rsy9ouXVl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621652196</pqid></control><display><type>article</type><title>Insights into the binding manners of an Fe doped MOF-808 in high-performance adsorption: a case of antimony adsorption</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Sun, Baihe ; Zhang, Kai ; Ren, Zhong ; Ni, Chenquan ; Hu, Huiqin ; Zhang, Xujing ; Yang, Liming ; Shao, Penghui ; Shi, Hui ; Yu, Kai ; Ding, Lin ; Peng, Yue ; Luo, Xubiao</creator><creatorcontrib>Sun, Baihe ; Zhang, Kai ; Ren, Zhong ; Ni, Chenquan ; Hu, Huiqin ; Zhang, Xujing ; Yang, Liming ; Shao, Penghui ; Shi, Hui ; Yu, Kai ; Ding, Lin ; Peng, Yue ; Luo, Xubiao</creatorcontrib><description>The full utilization of adsorption sites is crucial for adsorption technology. Metal-organic frameworks (MOFs), which are hotspot materials in environmental remediation, are not satisfactory in many cases because of their high specific surface area and relatively low adsorption capacity. In this work, a series of zirconium-iron bimetallic MOFs (Zr
x
Fe
(1−
x
)
-MOF-808) was prepared. The optimal material (Zr
0.8
Fe
0.2
-MOF-808) possesses superb adsorption capacities of 524 and 310 mg g
−1
for antimonate and antimonite, respectively. The carboxyl and hydroxyl groups were identified as the main adsorption sites by FTIR and XPS. The role of Fe in the adsorption process of Zr
0.8
Fe
0.2
-MOF-808 was further explored by DFT simulations, and four binding manners were discovered, consistent with the adsorption capacity data. Subsequently, application potential tests proved that the Zr
0.8
Fe
0.2
-MOF-808 shows good anti-interference ability, wide pH adaptability, and recyclability. Overall, this high-performance bimetallic MOF has been analyzed from the macrocosmic to the microcosmic, which provides certain support for the development of MOF modifications.
Fe doping results in the change of SBU and corresponding binding modes of MOF-808.</description><identifier>ISSN: 2051-8153</identifier><identifier>EISSN: 2051-8161</identifier><identifier>DOI: 10.1039/d1en00878a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adaptability ; Adsorption ; Antimony ; Bimetals ; Binding ; Environmental cleanup ; Hydroxyl groups ; Iron ; Metal-organic frameworks ; Metals ; Recyclability ; Stibnite ; Zirconium</subject><ispartof>Environmental science. Nano, 2022-01, Vol.9 (1), p.254-264</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-13cda7e42c168659066bc27f76fb8754bee0b69a19f2b9ab3bd68c8a9352ed9c3</citedby><cites>FETCH-LOGICAL-c281t-13cda7e42c168659066bc27f76fb8754bee0b69a19f2b9ab3bd68c8a9352ed9c3</cites><orcidid>0000-0003-4782-8721 ; 0000-0002-0608-8635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sun, Baihe</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Ren, Zhong</creatorcontrib><creatorcontrib>Ni, Chenquan</creatorcontrib><creatorcontrib>Hu, Huiqin</creatorcontrib><creatorcontrib>Zhang, Xujing</creatorcontrib><creatorcontrib>Yang, Liming</creatorcontrib><creatorcontrib>Shao, Penghui</creatorcontrib><creatorcontrib>Shi, Hui</creatorcontrib><creatorcontrib>Yu, Kai</creatorcontrib><creatorcontrib>Ding, Lin</creatorcontrib><creatorcontrib>Peng, Yue</creatorcontrib><creatorcontrib>Luo, Xubiao</creatorcontrib><title>Insights into the binding manners of an Fe doped MOF-808 in high-performance adsorption: a case of antimony adsorption</title><title>Environmental science. Nano</title><description>The full utilization of adsorption sites is crucial for adsorption technology. Metal-organic frameworks (MOFs), which are hotspot materials in environmental remediation, are not satisfactory in many cases because of their high specific surface area and relatively low adsorption capacity. In this work, a series of zirconium-iron bimetallic MOFs (Zr
x
Fe
(1−
x
)
-MOF-808) was prepared. The optimal material (Zr
0.8
Fe
0.2
-MOF-808) possesses superb adsorption capacities of 524 and 310 mg g
−1
for antimonate and antimonite, respectively. The carboxyl and hydroxyl groups were identified as the main adsorption sites by FTIR and XPS. The role of Fe in the adsorption process of Zr
0.8
Fe
0.2
-MOF-808 was further explored by DFT simulations, and four binding manners were discovered, consistent with the adsorption capacity data. Subsequently, application potential tests proved that the Zr
0.8
Fe
0.2
-MOF-808 shows good anti-interference ability, wide pH adaptability, and recyclability. Overall, this high-performance bimetallic MOF has been analyzed from the macrocosmic to the microcosmic, which provides certain support for the development of MOF modifications.
Fe doping results in the change of SBU and corresponding binding modes of MOF-808.</description><subject>Adaptability</subject><subject>Adsorption</subject><subject>Antimony</subject><subject>Bimetals</subject><subject>Binding</subject><subject>Environmental cleanup</subject><subject>Hydroxyl groups</subject><subject>Iron</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Recyclability</subject><subject>Stibnite</subject><subject>Zirconium</subject><issn>2051-8153</issn><issn>2051-8161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpN0E1LAzEQBuAgCpbai3ch4E1YzSTdbOKt1FYL1V70vORr2y02WZOt0H_v6kr1NAPzzAy8CF0CuQXC5J0F5wkRhVAnaEBJDpkADqfHPmfnaJTSlhACQHPGiwH6XPhUrzdtwrVvA243Duva29qv8U5572LCocLK47nDNjTO4ufVPBNEdB5vus2scbEKscPGYWVTiE1bB3-PFTYquX67rXfBH_6NL9BZpd6TG_3WIXqbz16nT9ly9biYTpaZoQLaDJixqnBjaoALnkvCuTa0qApeaVHkY-0c0VwqkBXVUmmmLRdGKMly6qw0bIiu-7tNDB97l9pyG_bRdy9LyinwnILknbrplYkhpeiqson1TsVDCaT8jrZ8gNnLT7STDl_1OCZzdH_Rsy9ouXVl</recordid><startdate>20220121</startdate><enddate>20220121</enddate><creator>Sun, Baihe</creator><creator>Zhang, Kai</creator><creator>Ren, Zhong</creator><creator>Ni, Chenquan</creator><creator>Hu, Huiqin</creator><creator>Zhang, Xujing</creator><creator>Yang, Liming</creator><creator>Shao, Penghui</creator><creator>Shi, Hui</creator><creator>Yu, Kai</creator><creator>Ding, Lin</creator><creator>Peng, Yue</creator><creator>Luo, Xubiao</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4782-8721</orcidid><orcidid>https://orcid.org/0000-0002-0608-8635</orcidid></search><sort><creationdate>20220121</creationdate><title>Insights into the binding manners of an Fe doped MOF-808 in high-performance adsorption: a case of antimony adsorption</title><author>Sun, Baihe ; Zhang, Kai ; Ren, Zhong ; Ni, Chenquan ; Hu, Huiqin ; Zhang, Xujing ; Yang, Liming ; Shao, Penghui ; Shi, Hui ; Yu, Kai ; Ding, Lin ; Peng, Yue ; Luo, Xubiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-13cda7e42c168659066bc27f76fb8754bee0b69a19f2b9ab3bd68c8a9352ed9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptability</topic><topic>Adsorption</topic><topic>Antimony</topic><topic>Bimetals</topic><topic>Binding</topic><topic>Environmental cleanup</topic><topic>Hydroxyl groups</topic><topic>Iron</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Recyclability</topic><topic>Stibnite</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Baihe</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Ren, Zhong</creatorcontrib><creatorcontrib>Ni, Chenquan</creatorcontrib><creatorcontrib>Hu, Huiqin</creatorcontrib><creatorcontrib>Zhang, Xujing</creatorcontrib><creatorcontrib>Yang, Liming</creatorcontrib><creatorcontrib>Shao, Penghui</creatorcontrib><creatorcontrib>Shi, Hui</creatorcontrib><creatorcontrib>Yu, Kai</creatorcontrib><creatorcontrib>Ding, Lin</creatorcontrib><creatorcontrib>Peng, Yue</creatorcontrib><creatorcontrib>Luo, Xubiao</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental science. Nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Baihe</au><au>Zhang, Kai</au><au>Ren, Zhong</au><au>Ni, Chenquan</au><au>Hu, Huiqin</au><au>Zhang, Xujing</au><au>Yang, Liming</au><au>Shao, Penghui</au><au>Shi, Hui</au><au>Yu, Kai</au><au>Ding, Lin</au><au>Peng, Yue</au><au>Luo, Xubiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the binding manners of an Fe doped MOF-808 in high-performance adsorption: a case of antimony adsorption</atitle><jtitle>Environmental science. Nano</jtitle><date>2022-01-21</date><risdate>2022</risdate><volume>9</volume><issue>1</issue><spage>254</spage><epage>264</epage><pages>254-264</pages><issn>2051-8153</issn><eissn>2051-8161</eissn><abstract>The full utilization of adsorption sites is crucial for adsorption technology. Metal-organic frameworks (MOFs), which are hotspot materials in environmental remediation, are not satisfactory in many cases because of their high specific surface area and relatively low adsorption capacity. In this work, a series of zirconium-iron bimetallic MOFs (Zr
x
Fe
(1−
x
)
-MOF-808) was prepared. The optimal material (Zr
0.8
Fe
0.2
-MOF-808) possesses superb adsorption capacities of 524 and 310 mg g
−1
for antimonate and antimonite, respectively. The carboxyl and hydroxyl groups were identified as the main adsorption sites by FTIR and XPS. The role of Fe in the adsorption process of Zr
0.8
Fe
0.2
-MOF-808 was further explored by DFT simulations, and four binding manners were discovered, consistent with the adsorption capacity data. Subsequently, application potential tests proved that the Zr
0.8
Fe
0.2
-MOF-808 shows good anti-interference ability, wide pH adaptability, and recyclability. Overall, this high-performance bimetallic MOF has been analyzed from the macrocosmic to the microcosmic, which provides certain support for the development of MOF modifications.
Fe doping results in the change of SBU and corresponding binding modes of MOF-808.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1en00878a</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4782-8721</orcidid><orcidid>https://orcid.org/0000-0002-0608-8635</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-8153 |
ispartof | Environmental science. Nano, 2022-01, Vol.9 (1), p.254-264 |
issn | 2051-8153 2051-8161 |
language | eng |
recordid | cdi_rsc_primary_d1en00878a |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Adaptability Adsorption Antimony Bimetals Binding Environmental cleanup Hydroxyl groups Iron Metal-organic frameworks Metals Recyclability Stibnite Zirconium |
title | Insights into the binding manners of an Fe doped MOF-808 in high-performance adsorption: a case of antimony adsorption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20binding%20manners%20of%20an%20Fe%20doped%20MOF-808%20in%20high-performance%20adsorption:%20a%20case%20of%20antimony%20adsorption&rft.jtitle=Environmental%20science.%20Nano&rft.au=Sun,%20Baihe&rft.date=2022-01-21&rft.volume=9&rft.issue=1&rft.spage=254&rft.epage=264&rft.pages=254-264&rft.issn=2051-8153&rft.eissn=2051-8161&rft_id=info:doi/10.1039/d1en00878a&rft_dat=%3Cproquest_rsc_p%3E2621652196%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621652196&rft_id=info:pmid/&rfr_iscdi=true |