Realizing high thermoelectric performance in non-nanostructured n-type PbTe
Nanostructure engineering has improved the performance of thermoelectric materials, but the deteriorated stability of the materials at high temperatures shortens the service life of thermoelectric modules. Here, we realized a high zT value of 1.7 at 750 K in S-doped n-type PbTe without introducing a...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2022-05, Vol.15 (5), p.192-1929 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1929 |
---|---|
container_issue | 5 |
container_start_page | 192 |
container_title | Energy & environmental science |
container_volume | 15 |
creator | Jia, Baohai Huang, Yi Wang, Yan Zhou, Yeshiyuan Zhao, Xiaodie Ning, Suiting Xu, Xiao Lin, Peijian Chen, Zhiquan Jiang, Binbin He, Jiaqing |
description | Nanostructure engineering has improved the performance of thermoelectric materials, but the deteriorated stability of the materials at high temperatures shortens the service life of thermoelectric modules. Here, we realized a high
zT
value of 1.7 at 750 K in S-doped n-type PbTe without introducing any nanoprecipitates. This is comparable to the state-of-the-art nanocomposites. Small S-doping can increase the formation energy of Pb vacancies by increasing the bonding energy between anionic and cationic atoms, thus resulting in the elimination of Pb vacancies and improvement in carrier mobility. Fabricated single and segmented thermoelectric modules based on optimized PbTe in this work show high conversion efficiencies of 9.3% and 12.2%, respectively. The output properties of the segmented module remain unchanged over a 10 h measurement period. This emphasizes the good stability of the materials. This work demonstrates the importance of manipulating vacancies in thermoelectric materials and illustrates the practical value of efficient and stable PbTe thermoelectric modules.
A high
zT
of 1.7 without introducing any second phase in n-type PbTe was realized and a high energy conversion efficiency of 12.2% in an assembled generation module was achieved as well. |
doi_str_mv | 10.1039/d1ee03883d |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1ee03883d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665526429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-6a6473914c1243ddca7b168034678ac358a8bc65c4aad177a9c5c13aedc243d63</originalsourceid><addsrcrecordid>eNpF0EtLAzEQwPEgCtbqxbuw4E1YzTvZo7T1gQVF6nlJZ6ftljZZk91D_fRtrY_TzOHHDPwJuWT0llFR3FUMkQprRXVEeswomStD9fHvrgt-Ss5SWlKqOTVFj7y8o1vVX7WfZ4t6vsjaBcZ1wBVCG2vIGoyzENfOA2a1z3zwuXc-pDZ20HYRq8zn7abB7G06wXNyMnOrhBc_s08-HkaTwVM-fn18HtyPc-CWtbl2WhpRMAmMS1FV4MyUaUuF1MY6EMo6OwWtQDpXMWNcAQqYcFjB3mvRJ9eHu00Mnx2mtlyGLvrdy5JrrRTXkhc7dXNQEENKEWdlE-u1i5uS0XIfqxyy0eg71nCHrw44Jvhz_zHFFu-qZmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665526429</pqid></control><display><type>article</type><title>Realizing high thermoelectric performance in non-nanostructured n-type PbTe</title><source>Royal Society Of Chemistry Journals</source><creator>Jia, Baohai ; Huang, Yi ; Wang, Yan ; Zhou, Yeshiyuan ; Zhao, Xiaodie ; Ning, Suiting ; Xu, Xiao ; Lin, Peijian ; Chen, Zhiquan ; Jiang, Binbin ; He, Jiaqing</creator><creatorcontrib>Jia, Baohai ; Huang, Yi ; Wang, Yan ; Zhou, Yeshiyuan ; Zhao, Xiaodie ; Ning, Suiting ; Xu, Xiao ; Lin, Peijian ; Chen, Zhiquan ; Jiang, Binbin ; He, Jiaqing</creatorcontrib><description>Nanostructure engineering has improved the performance of thermoelectric materials, but the deteriorated stability of the materials at high temperatures shortens the service life of thermoelectric modules. Here, we realized a high
zT
value of 1.7 at 750 K in S-doped n-type PbTe without introducing any nanoprecipitates. This is comparable to the state-of-the-art nanocomposites. Small S-doping can increase the formation energy of Pb vacancies by increasing the bonding energy between anionic and cationic atoms, thus resulting in the elimination of Pb vacancies and improvement in carrier mobility. Fabricated single and segmented thermoelectric modules based on optimized PbTe in this work show high conversion efficiencies of 9.3% and 12.2%, respectively. The output properties of the segmented module remain unchanged over a 10 h measurement period. This emphasizes the good stability of the materials. This work demonstrates the importance of manipulating vacancies in thermoelectric materials and illustrates the practical value of efficient and stable PbTe thermoelectric modules.
A high
zT
of 1.7 without introducing any second phase in n-type PbTe was realized and a high energy conversion efficiency of 12.2% in an assembled generation module was achieved as well.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d1ee03883d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carrier mobility ; Free energy ; Heat of formation ; High temperature ; Intermetallic compounds ; Lead ; Lead tellurides ; Modules ; Nanocomposites ; Service life ; Stability ; Thermoelectric materials ; Vacancies</subject><ispartof>Energy & environmental science, 2022-05, Vol.15 (5), p.192-1929</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-6a6473914c1243ddca7b168034678ac358a8bc65c4aad177a9c5c13aedc243d63</citedby><cites>FETCH-LOGICAL-c281t-6a6473914c1243ddca7b168034678ac358a8bc65c4aad177a9c5c13aedc243d63</cites><orcidid>0000-0003-3954-6003 ; 0000-0002-9518-7837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Jia, Baohai</creatorcontrib><creatorcontrib>Huang, Yi</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhou, Yeshiyuan</creatorcontrib><creatorcontrib>Zhao, Xiaodie</creatorcontrib><creatorcontrib>Ning, Suiting</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Lin, Peijian</creatorcontrib><creatorcontrib>Chen, Zhiquan</creatorcontrib><creatorcontrib>Jiang, Binbin</creatorcontrib><creatorcontrib>He, Jiaqing</creatorcontrib><title>Realizing high thermoelectric performance in non-nanostructured n-type PbTe</title><title>Energy & environmental science</title><description>Nanostructure engineering has improved the performance of thermoelectric materials, but the deteriorated stability of the materials at high temperatures shortens the service life of thermoelectric modules. Here, we realized a high
zT
value of 1.7 at 750 K in S-doped n-type PbTe without introducing any nanoprecipitates. This is comparable to the state-of-the-art nanocomposites. Small S-doping can increase the formation energy of Pb vacancies by increasing the bonding energy between anionic and cationic atoms, thus resulting in the elimination of Pb vacancies and improvement in carrier mobility. Fabricated single and segmented thermoelectric modules based on optimized PbTe in this work show high conversion efficiencies of 9.3% and 12.2%, respectively. The output properties of the segmented module remain unchanged over a 10 h measurement period. This emphasizes the good stability of the materials. This work demonstrates the importance of manipulating vacancies in thermoelectric materials and illustrates the practical value of efficient and stable PbTe thermoelectric modules.
A high
zT
of 1.7 without introducing any second phase in n-type PbTe was realized and a high energy conversion efficiency of 12.2% in an assembled generation module was achieved as well.</description><subject>Carrier mobility</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>High temperature</subject><subject>Intermetallic compounds</subject><subject>Lead</subject><subject>Lead tellurides</subject><subject>Modules</subject><subject>Nanocomposites</subject><subject>Service life</subject><subject>Stability</subject><subject>Thermoelectric materials</subject><subject>Vacancies</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpF0EtLAzEQwPEgCtbqxbuw4E1YzTvZo7T1gQVF6nlJZ6ftljZZk91D_fRtrY_TzOHHDPwJuWT0llFR3FUMkQprRXVEeswomStD9fHvrgt-Ss5SWlKqOTVFj7y8o1vVX7WfZ4t6vsjaBcZ1wBVCG2vIGoyzENfOA2a1z3zwuXc-pDZ20HYRq8zn7abB7G06wXNyMnOrhBc_s08-HkaTwVM-fn18HtyPc-CWtbl2WhpRMAmMS1FV4MyUaUuF1MY6EMo6OwWtQDpXMWNcAQqYcFjB3mvRJ9eHu00Mnx2mtlyGLvrdy5JrrRTXkhc7dXNQEENKEWdlE-u1i5uS0XIfqxyy0eg71nCHrw44Jvhz_zHFFu-qZmQ</recordid><startdate>20220518</startdate><enddate>20220518</enddate><creator>Jia, Baohai</creator><creator>Huang, Yi</creator><creator>Wang, Yan</creator><creator>Zhou, Yeshiyuan</creator><creator>Zhao, Xiaodie</creator><creator>Ning, Suiting</creator><creator>Xu, Xiao</creator><creator>Lin, Peijian</creator><creator>Chen, Zhiquan</creator><creator>Jiang, Binbin</creator><creator>He, Jiaqing</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3954-6003</orcidid><orcidid>https://orcid.org/0000-0002-9518-7837</orcidid></search><sort><creationdate>20220518</creationdate><title>Realizing high thermoelectric performance in non-nanostructured n-type PbTe</title><author>Jia, Baohai ; Huang, Yi ; Wang, Yan ; Zhou, Yeshiyuan ; Zhao, Xiaodie ; Ning, Suiting ; Xu, Xiao ; Lin, Peijian ; Chen, Zhiquan ; Jiang, Binbin ; He, Jiaqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-6a6473914c1243ddca7b168034678ac358a8bc65c4aad177a9c5c13aedc243d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carrier mobility</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>High temperature</topic><topic>Intermetallic compounds</topic><topic>Lead</topic><topic>Lead tellurides</topic><topic>Modules</topic><topic>Nanocomposites</topic><topic>Service life</topic><topic>Stability</topic><topic>Thermoelectric materials</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Baohai</creatorcontrib><creatorcontrib>Huang, Yi</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhou, Yeshiyuan</creatorcontrib><creatorcontrib>Zhao, Xiaodie</creatorcontrib><creatorcontrib>Ning, Suiting</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Lin, Peijian</creatorcontrib><creatorcontrib>Chen, Zhiquan</creatorcontrib><creatorcontrib>Jiang, Binbin</creatorcontrib><creatorcontrib>He, Jiaqing</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Baohai</au><au>Huang, Yi</au><au>Wang, Yan</au><au>Zhou, Yeshiyuan</au><au>Zhao, Xiaodie</au><au>Ning, Suiting</au><au>Xu, Xiao</au><au>Lin, Peijian</au><au>Chen, Zhiquan</au><au>Jiang, Binbin</au><au>He, Jiaqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realizing high thermoelectric performance in non-nanostructured n-type PbTe</atitle><jtitle>Energy & environmental science</jtitle><date>2022-05-18</date><risdate>2022</risdate><volume>15</volume><issue>5</issue><spage>192</spage><epage>1929</epage><pages>192-1929</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Nanostructure engineering has improved the performance of thermoelectric materials, but the deteriorated stability of the materials at high temperatures shortens the service life of thermoelectric modules. Here, we realized a high
zT
value of 1.7 at 750 K in S-doped n-type PbTe without introducing any nanoprecipitates. This is comparable to the state-of-the-art nanocomposites. Small S-doping can increase the formation energy of Pb vacancies by increasing the bonding energy between anionic and cationic atoms, thus resulting in the elimination of Pb vacancies and improvement in carrier mobility. Fabricated single and segmented thermoelectric modules based on optimized PbTe in this work show high conversion efficiencies of 9.3% and 12.2%, respectively. The output properties of the segmented module remain unchanged over a 10 h measurement period. This emphasizes the good stability of the materials. This work demonstrates the importance of manipulating vacancies in thermoelectric materials and illustrates the practical value of efficient and stable PbTe thermoelectric modules.
A high
zT
of 1.7 without introducing any second phase in n-type PbTe was realized and a high energy conversion efficiency of 12.2% in an assembled generation module was achieved as well.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ee03883d</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3954-6003</orcidid><orcidid>https://orcid.org/0000-0002-9518-7837</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2022-05, Vol.15 (5), p.192-1929 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_rsc_primary_d1ee03883d |
source | Royal Society Of Chemistry Journals |
subjects | Carrier mobility Free energy Heat of formation High temperature Intermetallic compounds Lead Lead tellurides Modules Nanocomposites Service life Stability Thermoelectric materials Vacancies |
title | Realizing high thermoelectric performance in non-nanostructured n-type PbTe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realizing%20high%20thermoelectric%20performance%20in%20non-nanostructured%20n-type%20PbTe&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Jia,%20Baohai&rft.date=2022-05-18&rft.volume=15&rft.issue=5&rft.spage=192&rft.epage=1929&rft.pages=192-1929&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d1ee03883d&rft_dat=%3Cproquest_rsc_p%3E2665526429%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665526429&rft_id=info:pmid/&rfr_iscdi=true |