Realizing high thermoelectric performance in non-nanostructured n-type PbTe

Nanostructure engineering has improved the performance of thermoelectric materials, but the deteriorated stability of the materials at high temperatures shortens the service life of thermoelectric modules. Here, we realized a high zT value of 1.7 at 750 K in S-doped n-type PbTe without introducing a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2022-05, Vol.15 (5), p.192-1929
Hauptverfasser: Jia, Baohai, Huang, Yi, Wang, Yan, Zhou, Yeshiyuan, Zhao, Xiaodie, Ning, Suiting, Xu, Xiao, Lin, Peijian, Chen, Zhiquan, Jiang, Binbin, He, Jiaqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1929
container_issue 5
container_start_page 192
container_title Energy & environmental science
container_volume 15
creator Jia, Baohai
Huang, Yi
Wang, Yan
Zhou, Yeshiyuan
Zhao, Xiaodie
Ning, Suiting
Xu, Xiao
Lin, Peijian
Chen, Zhiquan
Jiang, Binbin
He, Jiaqing
description Nanostructure engineering has improved the performance of thermoelectric materials, but the deteriorated stability of the materials at high temperatures shortens the service life of thermoelectric modules. Here, we realized a high zT value of 1.7 at 750 K in S-doped n-type PbTe without introducing any nanoprecipitates. This is comparable to the state-of-the-art nanocomposites. Small S-doping can increase the formation energy of Pb vacancies by increasing the bonding energy between anionic and cationic atoms, thus resulting in the elimination of Pb vacancies and improvement in carrier mobility. Fabricated single and segmented thermoelectric modules based on optimized PbTe in this work show high conversion efficiencies of 9.3% and 12.2%, respectively. The output properties of the segmented module remain unchanged over a 10 h measurement period. This emphasizes the good stability of the materials. This work demonstrates the importance of manipulating vacancies in thermoelectric materials and illustrates the practical value of efficient and stable PbTe thermoelectric modules. A high zT of 1.7 without introducing any second phase in n-type PbTe was realized and a high energy conversion efficiency of 12.2% in an assembled generation module was achieved as well.
doi_str_mv 10.1039/d1ee03883d
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1ee03883d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665526429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-6a6473914c1243ddca7b168034678ac358a8bc65c4aad177a9c5c13aedc243d63</originalsourceid><addsrcrecordid>eNpF0EtLAzEQwPEgCtbqxbuw4E1YzTvZo7T1gQVF6nlJZ6ftljZZk91D_fRtrY_TzOHHDPwJuWT0llFR3FUMkQprRXVEeswomStD9fHvrgt-Ss5SWlKqOTVFj7y8o1vVX7WfZ4t6vsjaBcZ1wBVCG2vIGoyzENfOA2a1z3zwuXc-pDZ20HYRq8zn7abB7G06wXNyMnOrhBc_s08-HkaTwVM-fn18HtyPc-CWtbl2WhpRMAmMS1FV4MyUaUuF1MY6EMo6OwWtQDpXMWNcAQqYcFjB3mvRJ9eHu00Mnx2mtlyGLvrdy5JrrRTXkhc7dXNQEENKEWdlE-u1i5uS0XIfqxyy0eg71nCHrw44Jvhz_zHFFu-qZmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665526429</pqid></control><display><type>article</type><title>Realizing high thermoelectric performance in non-nanostructured n-type PbTe</title><source>Royal Society Of Chemistry Journals</source><creator>Jia, Baohai ; Huang, Yi ; Wang, Yan ; Zhou, Yeshiyuan ; Zhao, Xiaodie ; Ning, Suiting ; Xu, Xiao ; Lin, Peijian ; Chen, Zhiquan ; Jiang, Binbin ; He, Jiaqing</creator><creatorcontrib>Jia, Baohai ; Huang, Yi ; Wang, Yan ; Zhou, Yeshiyuan ; Zhao, Xiaodie ; Ning, Suiting ; Xu, Xiao ; Lin, Peijian ; Chen, Zhiquan ; Jiang, Binbin ; He, Jiaqing</creatorcontrib><description>Nanostructure engineering has improved the performance of thermoelectric materials, but the deteriorated stability of the materials at high temperatures shortens the service life of thermoelectric modules. Here, we realized a high zT value of 1.7 at 750 K in S-doped n-type PbTe without introducing any nanoprecipitates. This is comparable to the state-of-the-art nanocomposites. Small S-doping can increase the formation energy of Pb vacancies by increasing the bonding energy between anionic and cationic atoms, thus resulting in the elimination of Pb vacancies and improvement in carrier mobility. Fabricated single and segmented thermoelectric modules based on optimized PbTe in this work show high conversion efficiencies of 9.3% and 12.2%, respectively. The output properties of the segmented module remain unchanged over a 10 h measurement period. This emphasizes the good stability of the materials. This work demonstrates the importance of manipulating vacancies in thermoelectric materials and illustrates the practical value of efficient and stable PbTe thermoelectric modules. A high zT of 1.7 without introducing any second phase in n-type PbTe was realized and a high energy conversion efficiency of 12.2% in an assembled generation module was achieved as well.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d1ee03883d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carrier mobility ; Free energy ; Heat of formation ; High temperature ; Intermetallic compounds ; Lead ; Lead tellurides ; Modules ; Nanocomposites ; Service life ; Stability ; Thermoelectric materials ; Vacancies</subject><ispartof>Energy &amp; environmental science, 2022-05, Vol.15 (5), p.192-1929</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-6a6473914c1243ddca7b168034678ac358a8bc65c4aad177a9c5c13aedc243d63</citedby><cites>FETCH-LOGICAL-c281t-6a6473914c1243ddca7b168034678ac358a8bc65c4aad177a9c5c13aedc243d63</cites><orcidid>0000-0003-3954-6003 ; 0000-0002-9518-7837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Jia, Baohai</creatorcontrib><creatorcontrib>Huang, Yi</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhou, Yeshiyuan</creatorcontrib><creatorcontrib>Zhao, Xiaodie</creatorcontrib><creatorcontrib>Ning, Suiting</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Lin, Peijian</creatorcontrib><creatorcontrib>Chen, Zhiquan</creatorcontrib><creatorcontrib>Jiang, Binbin</creatorcontrib><creatorcontrib>He, Jiaqing</creatorcontrib><title>Realizing high thermoelectric performance in non-nanostructured n-type PbTe</title><title>Energy &amp; environmental science</title><description>Nanostructure engineering has improved the performance of thermoelectric materials, but the deteriorated stability of the materials at high temperatures shortens the service life of thermoelectric modules. Here, we realized a high zT value of 1.7 at 750 K in S-doped n-type PbTe without introducing any nanoprecipitates. This is comparable to the state-of-the-art nanocomposites. Small S-doping can increase the formation energy of Pb vacancies by increasing the bonding energy between anionic and cationic atoms, thus resulting in the elimination of Pb vacancies and improvement in carrier mobility. Fabricated single and segmented thermoelectric modules based on optimized PbTe in this work show high conversion efficiencies of 9.3% and 12.2%, respectively. The output properties of the segmented module remain unchanged over a 10 h measurement period. This emphasizes the good stability of the materials. This work demonstrates the importance of manipulating vacancies in thermoelectric materials and illustrates the practical value of efficient and stable PbTe thermoelectric modules. A high zT of 1.7 without introducing any second phase in n-type PbTe was realized and a high energy conversion efficiency of 12.2% in an assembled generation module was achieved as well.</description><subject>Carrier mobility</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>High temperature</subject><subject>Intermetallic compounds</subject><subject>Lead</subject><subject>Lead tellurides</subject><subject>Modules</subject><subject>Nanocomposites</subject><subject>Service life</subject><subject>Stability</subject><subject>Thermoelectric materials</subject><subject>Vacancies</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpF0EtLAzEQwPEgCtbqxbuw4E1YzTvZo7T1gQVF6nlJZ6ftljZZk91D_fRtrY_TzOHHDPwJuWT0llFR3FUMkQprRXVEeswomStD9fHvrgt-Ss5SWlKqOTVFj7y8o1vVX7WfZ4t6vsjaBcZ1wBVCG2vIGoyzENfOA2a1z3zwuXc-pDZ20HYRq8zn7abB7G06wXNyMnOrhBc_s08-HkaTwVM-fn18HtyPc-CWtbl2WhpRMAmMS1FV4MyUaUuF1MY6EMo6OwWtQDpXMWNcAQqYcFjB3mvRJ9eHu00Mnx2mtlyGLvrdy5JrrRTXkhc7dXNQEENKEWdlE-u1i5uS0XIfqxyy0eg71nCHrw44Jvhz_zHFFu-qZmQ</recordid><startdate>20220518</startdate><enddate>20220518</enddate><creator>Jia, Baohai</creator><creator>Huang, Yi</creator><creator>Wang, Yan</creator><creator>Zhou, Yeshiyuan</creator><creator>Zhao, Xiaodie</creator><creator>Ning, Suiting</creator><creator>Xu, Xiao</creator><creator>Lin, Peijian</creator><creator>Chen, Zhiquan</creator><creator>Jiang, Binbin</creator><creator>He, Jiaqing</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3954-6003</orcidid><orcidid>https://orcid.org/0000-0002-9518-7837</orcidid></search><sort><creationdate>20220518</creationdate><title>Realizing high thermoelectric performance in non-nanostructured n-type PbTe</title><author>Jia, Baohai ; Huang, Yi ; Wang, Yan ; Zhou, Yeshiyuan ; Zhao, Xiaodie ; Ning, Suiting ; Xu, Xiao ; Lin, Peijian ; Chen, Zhiquan ; Jiang, Binbin ; He, Jiaqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-6a6473914c1243ddca7b168034678ac358a8bc65c4aad177a9c5c13aedc243d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carrier mobility</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>High temperature</topic><topic>Intermetallic compounds</topic><topic>Lead</topic><topic>Lead tellurides</topic><topic>Modules</topic><topic>Nanocomposites</topic><topic>Service life</topic><topic>Stability</topic><topic>Thermoelectric materials</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Baohai</creatorcontrib><creatorcontrib>Huang, Yi</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhou, Yeshiyuan</creatorcontrib><creatorcontrib>Zhao, Xiaodie</creatorcontrib><creatorcontrib>Ning, Suiting</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Lin, Peijian</creatorcontrib><creatorcontrib>Chen, Zhiquan</creatorcontrib><creatorcontrib>Jiang, Binbin</creatorcontrib><creatorcontrib>He, Jiaqing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Baohai</au><au>Huang, Yi</au><au>Wang, Yan</au><au>Zhou, Yeshiyuan</au><au>Zhao, Xiaodie</au><au>Ning, Suiting</au><au>Xu, Xiao</au><au>Lin, Peijian</au><au>Chen, Zhiquan</au><au>Jiang, Binbin</au><au>He, Jiaqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realizing high thermoelectric performance in non-nanostructured n-type PbTe</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2022-05-18</date><risdate>2022</risdate><volume>15</volume><issue>5</issue><spage>192</spage><epage>1929</epage><pages>192-1929</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Nanostructure engineering has improved the performance of thermoelectric materials, but the deteriorated stability of the materials at high temperatures shortens the service life of thermoelectric modules. Here, we realized a high zT value of 1.7 at 750 K in S-doped n-type PbTe without introducing any nanoprecipitates. This is comparable to the state-of-the-art nanocomposites. Small S-doping can increase the formation energy of Pb vacancies by increasing the bonding energy between anionic and cationic atoms, thus resulting in the elimination of Pb vacancies and improvement in carrier mobility. Fabricated single and segmented thermoelectric modules based on optimized PbTe in this work show high conversion efficiencies of 9.3% and 12.2%, respectively. The output properties of the segmented module remain unchanged over a 10 h measurement period. This emphasizes the good stability of the materials. This work demonstrates the importance of manipulating vacancies in thermoelectric materials and illustrates the practical value of efficient and stable PbTe thermoelectric modules. A high zT of 1.7 without introducing any second phase in n-type PbTe was realized and a high energy conversion efficiency of 12.2% in an assembled generation module was achieved as well.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ee03883d</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3954-6003</orcidid><orcidid>https://orcid.org/0000-0002-9518-7837</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2022-05, Vol.15 (5), p.192-1929
issn 1754-5692
1754-5706
language eng
recordid cdi_rsc_primary_d1ee03883d
source Royal Society Of Chemistry Journals
subjects Carrier mobility
Free energy
Heat of formation
High temperature
Intermetallic compounds
Lead
Lead tellurides
Modules
Nanocomposites
Service life
Stability
Thermoelectric materials
Vacancies
title Realizing high thermoelectric performance in non-nanostructured n-type PbTe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realizing%20high%20thermoelectric%20performance%20in%20non-nanostructured%20n-type%20PbTe&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Jia,%20Baohai&rft.date=2022-05-18&rft.volume=15&rft.issue=5&rft.spage=192&rft.epage=1929&rft.pages=192-1929&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d1ee03883d&rft_dat=%3Cproquest_rsc_p%3E2665526429%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665526429&rft_id=info:pmid/&rfr_iscdi=true