Sublayer-enhanced atomic sites of single atom catalysts through atomization of metal oxide nanoparticles

Carbon supported single atom catalysts (SACs) show outstanding potential as effective electrocatalysts in energy storage and conversion devices. However, the low surface-active site density associated with most SACs constrains their practical applications. By controlling the layers of FeSA through t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2022-03, Vol.15 (3), p.1183-1191
Hauptverfasser: Wu, Xing, Wang, Qichen, Yang, Shize, Zhang, Jinyang, Cheng, Yi, Tang, Haolin, Ma, Lu, Min, Xiaobo, Tang, Chongjian, Jiang, San Ping, Wu, Feixiang, Lei, Yongpeng, Ciampic, Simone, Wang, Shuangyin, Dai, Liming
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1191
container_issue 3
container_start_page 1183
container_title Energy & environmental science
container_volume 15
creator Wu, Xing
Wang, Qichen
Yang, Shize
Zhang, Jinyang
Cheng, Yi
Tang, Haolin
Ma, Lu
Min, Xiaobo
Tang, Chongjian
Jiang, San Ping
Wu, Feixiang
Lei, Yongpeng
Ciampic, Simone
Wang, Shuangyin
Dai, Liming
description Carbon supported single atom catalysts (SACs) show outstanding potential as effective electrocatalysts in energy storage and conversion devices. However, the low surface-active site density associated with most SACs constrains their practical applications. By controlling the layers of FeSA through the in situ atomization of graphene supported metal oxide nanoparticles (NPs), we demonstrate that the Fe-N 4 -C active sites increase from 1 to 3 layers as the catalyst loading increases. The turnover frequency (TOF) for the oxygen reduction reaction (ORR) is doubled because the sublayer Fe-N x -C could tune the electron density by increasing the energy gap between the d-band centre and the fermi level, weakening the adsorption of intermediates and further reducing the reaction overpotential in comparison to a single-layer Fe-N 4 . The sublayer-enhanced catalysts achieve an optimum activity for the ORR with a half-wave potential of 0.901 V under alkaline conditions and 0.74 V under acidic conditions, significantly higher performance in comparison to that of single layer active sites. Potential applications of these newly-developed catalysts were demonstrated in Zn-air batteries and fuel cells. This work provides a new way to achieve high TOF by controlling the layer of single atom active sites and offers new strategies to overcome the low-density atomic sites for SACs. The in situ atomization of carbon supported metal oxide nanoparticles provides a novel strategy to synthesize atomic sites supported on highly graphitized carbon materials with high metal loading and controlled atomic layers.
doi_str_mv 10.1039/d1ee03311e
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d1ee03311e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d1ee03311e</sourcerecordid><originalsourceid>FETCH-rsc_primary_d1ee03311e3</originalsourceid><addsrcrecordid>eNqFjssKwjAURIMo-Ny4F_ID1aTVlq5Fca97uabXNpImkhvB-vW-celqDjNnMYyNpZhKkeSzQiKKJJESW6wns8U8WmQibX85zeMu6xOdhEhjkeU9Vm0vBwMN-ghtBVZhwSG4WitOOiBxd3yALQ2-aq4ggGkoEA-Vd5eyets3CNrZp1zjQ-DuqgvkFqw7gw9aGaQh6xzBEI4-OWCT9Wq33ESe1P7sdQ2-2f_uJ__2O55RSs0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sublayer-enhanced atomic sites of single atom catalysts through atomization of metal oxide nanoparticles</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wu, Xing ; Wang, Qichen ; Yang, Shize ; Zhang, Jinyang ; Cheng, Yi ; Tang, Haolin ; Ma, Lu ; Min, Xiaobo ; Tang, Chongjian ; Jiang, San Ping ; Wu, Feixiang ; Lei, Yongpeng ; Ciampic, Simone ; Wang, Shuangyin ; Dai, Liming</creator><creatorcontrib>Wu, Xing ; Wang, Qichen ; Yang, Shize ; Zhang, Jinyang ; Cheng, Yi ; Tang, Haolin ; Ma, Lu ; Min, Xiaobo ; Tang, Chongjian ; Jiang, San Ping ; Wu, Feixiang ; Lei, Yongpeng ; Ciampic, Simone ; Wang, Shuangyin ; Dai, Liming</creatorcontrib><description>Carbon supported single atom catalysts (SACs) show outstanding potential as effective electrocatalysts in energy storage and conversion devices. However, the low surface-active site density associated with most SACs constrains their practical applications. By controlling the layers of FeSA through the in situ atomization of graphene supported metal oxide nanoparticles (NPs), we demonstrate that the Fe-N 4 -C active sites increase from 1 to 3 layers as the catalyst loading increases. The turnover frequency (TOF) for the oxygen reduction reaction (ORR) is doubled because the sublayer Fe-N x -C could tune the electron density by increasing the energy gap between the d-band centre and the fermi level, weakening the adsorption of intermediates and further reducing the reaction overpotential in comparison to a single-layer Fe-N 4 . The sublayer-enhanced catalysts achieve an optimum activity for the ORR with a half-wave potential of 0.901 V under alkaline conditions and 0.74 V under acidic conditions, significantly higher performance in comparison to that of single layer active sites. Potential applications of these newly-developed catalysts were demonstrated in Zn-air batteries and fuel cells. This work provides a new way to achieve high TOF by controlling the layer of single atom active sites and offers new strategies to overcome the low-density atomic sites for SACs. The in situ atomization of carbon supported metal oxide nanoparticles provides a novel strategy to synthesize atomic sites supported on highly graphitized carbon materials with high metal loading and controlled atomic layers.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d1ee03311e</identifier><ispartof>Energy &amp; environmental science, 2022-03, Vol.15 (3), p.1183-1191</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wu, Xing</creatorcontrib><creatorcontrib>Wang, Qichen</creatorcontrib><creatorcontrib>Yang, Shize</creatorcontrib><creatorcontrib>Zhang, Jinyang</creatorcontrib><creatorcontrib>Cheng, Yi</creatorcontrib><creatorcontrib>Tang, Haolin</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Min, Xiaobo</creatorcontrib><creatorcontrib>Tang, Chongjian</creatorcontrib><creatorcontrib>Jiang, San Ping</creatorcontrib><creatorcontrib>Wu, Feixiang</creatorcontrib><creatorcontrib>Lei, Yongpeng</creatorcontrib><creatorcontrib>Ciampic, Simone</creatorcontrib><creatorcontrib>Wang, Shuangyin</creatorcontrib><creatorcontrib>Dai, Liming</creatorcontrib><title>Sublayer-enhanced atomic sites of single atom catalysts through atomization of metal oxide nanoparticles</title><title>Energy &amp; environmental science</title><description>Carbon supported single atom catalysts (SACs) show outstanding potential as effective electrocatalysts in energy storage and conversion devices. However, the low surface-active site density associated with most SACs constrains their practical applications. By controlling the layers of FeSA through the in situ atomization of graphene supported metal oxide nanoparticles (NPs), we demonstrate that the Fe-N 4 -C active sites increase from 1 to 3 layers as the catalyst loading increases. The turnover frequency (TOF) for the oxygen reduction reaction (ORR) is doubled because the sublayer Fe-N x -C could tune the electron density by increasing the energy gap between the d-band centre and the fermi level, weakening the adsorption of intermediates and further reducing the reaction overpotential in comparison to a single-layer Fe-N 4 . The sublayer-enhanced catalysts achieve an optimum activity for the ORR with a half-wave potential of 0.901 V under alkaline conditions and 0.74 V under acidic conditions, significantly higher performance in comparison to that of single layer active sites. Potential applications of these newly-developed catalysts were demonstrated in Zn-air batteries and fuel cells. This work provides a new way to achieve high TOF by controlling the layer of single atom active sites and offers new strategies to overcome the low-density atomic sites for SACs. The in situ atomization of carbon supported metal oxide nanoparticles provides a novel strategy to synthesize atomic sites supported on highly graphitized carbon materials with high metal loading and controlled atomic layers.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjssKwjAURIMo-Ny4F_ID1aTVlq5Fca97uabXNpImkhvB-vW-celqDjNnMYyNpZhKkeSzQiKKJJESW6wns8U8WmQibX85zeMu6xOdhEhjkeU9Vm0vBwMN-ghtBVZhwSG4WitOOiBxd3yALQ2-aq4ggGkoEA-Vd5eyets3CNrZp1zjQ-DuqgvkFqw7gw9aGaQh6xzBEI4-OWCT9Wq33ESe1P7sdQ2-2f_uJ__2O55RSs0</recordid><startdate>20220316</startdate><enddate>20220316</enddate><creator>Wu, Xing</creator><creator>Wang, Qichen</creator><creator>Yang, Shize</creator><creator>Zhang, Jinyang</creator><creator>Cheng, Yi</creator><creator>Tang, Haolin</creator><creator>Ma, Lu</creator><creator>Min, Xiaobo</creator><creator>Tang, Chongjian</creator><creator>Jiang, San Ping</creator><creator>Wu, Feixiang</creator><creator>Lei, Yongpeng</creator><creator>Ciampic, Simone</creator><creator>Wang, Shuangyin</creator><creator>Dai, Liming</creator><scope/></search><sort><creationdate>20220316</creationdate><title>Sublayer-enhanced atomic sites of single atom catalysts through atomization of metal oxide nanoparticles</title><author>Wu, Xing ; Wang, Qichen ; Yang, Shize ; Zhang, Jinyang ; Cheng, Yi ; Tang, Haolin ; Ma, Lu ; Min, Xiaobo ; Tang, Chongjian ; Jiang, San Ping ; Wu, Feixiang ; Lei, Yongpeng ; Ciampic, Simone ; Wang, Shuangyin ; Dai, Liming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d1ee03311e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xing</creatorcontrib><creatorcontrib>Wang, Qichen</creatorcontrib><creatorcontrib>Yang, Shize</creatorcontrib><creatorcontrib>Zhang, Jinyang</creatorcontrib><creatorcontrib>Cheng, Yi</creatorcontrib><creatorcontrib>Tang, Haolin</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Min, Xiaobo</creatorcontrib><creatorcontrib>Tang, Chongjian</creatorcontrib><creatorcontrib>Jiang, San Ping</creatorcontrib><creatorcontrib>Wu, Feixiang</creatorcontrib><creatorcontrib>Lei, Yongpeng</creatorcontrib><creatorcontrib>Ciampic, Simone</creatorcontrib><creatorcontrib>Wang, Shuangyin</creatorcontrib><creatorcontrib>Dai, Liming</creatorcontrib><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xing</au><au>Wang, Qichen</au><au>Yang, Shize</au><au>Zhang, Jinyang</au><au>Cheng, Yi</au><au>Tang, Haolin</au><au>Ma, Lu</au><au>Min, Xiaobo</au><au>Tang, Chongjian</au><au>Jiang, San Ping</au><au>Wu, Feixiang</au><au>Lei, Yongpeng</au><au>Ciampic, Simone</au><au>Wang, Shuangyin</au><au>Dai, Liming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sublayer-enhanced atomic sites of single atom catalysts through atomization of metal oxide nanoparticles</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2022-03-16</date><risdate>2022</risdate><volume>15</volume><issue>3</issue><spage>1183</spage><epage>1191</epage><pages>1183-1191</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Carbon supported single atom catalysts (SACs) show outstanding potential as effective electrocatalysts in energy storage and conversion devices. However, the low surface-active site density associated with most SACs constrains their practical applications. By controlling the layers of FeSA through the in situ atomization of graphene supported metal oxide nanoparticles (NPs), we demonstrate that the Fe-N 4 -C active sites increase from 1 to 3 layers as the catalyst loading increases. The turnover frequency (TOF) for the oxygen reduction reaction (ORR) is doubled because the sublayer Fe-N x -C could tune the electron density by increasing the energy gap between the d-band centre and the fermi level, weakening the adsorption of intermediates and further reducing the reaction overpotential in comparison to a single-layer Fe-N 4 . The sublayer-enhanced catalysts achieve an optimum activity for the ORR with a half-wave potential of 0.901 V under alkaline conditions and 0.74 V under acidic conditions, significantly higher performance in comparison to that of single layer active sites. Potential applications of these newly-developed catalysts were demonstrated in Zn-air batteries and fuel cells. This work provides a new way to achieve high TOF by controlling the layer of single atom active sites and offers new strategies to overcome the low-density atomic sites for SACs. The in situ atomization of carbon supported metal oxide nanoparticles provides a novel strategy to synthesize atomic sites supported on highly graphitized carbon materials with high metal loading and controlled atomic layers.</abstract><doi>10.1039/d1ee03311e</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2022-03, Vol.15 (3), p.1183-1191
issn 1754-5692
1754-5706
language
recordid cdi_rsc_primary_d1ee03311e
source Royal Society Of Chemistry Journals 2008-
title Sublayer-enhanced atomic sites of single atom catalysts through atomization of metal oxide nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sublayer-enhanced%20atomic%20sites%20of%20single%20atom%20catalysts%20through%20atomization%20of%20metal%20oxide%20nanoparticles&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Wu,%20Xing&rft.date=2022-03-16&rft.volume=15&rft.issue=3&rft.spage=1183&rft.epage=1191&rft.pages=1183-1191&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d1ee03311e&rft_dat=%3Crsc%3Ed1ee03311e%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true