A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion
Organic semiconductors (OSs) are emerging candidates as light-harvesting materials in photoelectrochemical (PEC) cells for direct solar-to-chemical conversion. Despite significant recent progress with OS-based photocathodes, the development of efficient and stable OS-based photoanodes remains a chal...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2021-05, Vol.14 (5), p.3141-3151 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3151 |
---|---|
container_issue | 5 |
container_start_page | 3141 |
container_title | Energy & environmental science |
container_volume | 14 |
creator | Yao, Liang Liu, Yongpeng Cho, Han-Hee Xia, Meng Sekar, Arvindh Primera Darwich, Barbara Wells, Rebekah A Yum, Jun-Ho Ren, Dan Grätzel, Michael Guijarro, Néstor Sivula, Kevin |
description | Organic semiconductors (OSs) are emerging candidates as light-harvesting materials in photoelectrochemical (PEC) cells for direct solar-to-chemical conversion. Despite significant recent progress with OS-based photocathodes, the development of efficient and stable OS-based photoanodes remains a challenge. Here, we demonstrate the concept of an
in situ
formed covalent polymer network (CPN) in a hybrid CPN:SnO
2
bulk-heterojunction (BHJ) to increase the photocurrent density (
J
ph
) and stability of OS-based photoanodes for PEC splitting of hydroiodic acid (HI). Our results indicate that the CPN:SnO
2
BHJ overcomes the limited exciton diffusion length in OSs and provides a
J
ph
improvement of more than three orders of magnitude compared to equivalent bilayer heterojunctions. Furthermore, insight into the operation of the hybrid BHJ in direct contact with aqueous electrolyte is gained with electrochemical impedance spectroscopy and PEC measurements under varying pH. With 1 M HI (pH 0) as the electrolyte, an optimized CPN:SnO
2
photoanode without catalyst or protection layer delivers a
J
ph
of 3.3 mA cm
−2
at the thermodynamic potential of iodide oxidation (+0.54 V
vs.
the normal hydrogen electrode) and a continuous operation for 27 h (
J
ph
loss of 12%), representing a new benchmark for OS photoanodes for solar-to-chemical conversion. Complete HI splitting is further demonstrated in an all-OS photocathode/photoanode PEC cell to produce H
2
and I
3
−
from simulated sunlight without applied bias.
The development of efficient and stable organic semiconductor-based photoanodes for solar fuel production is advanced by using a robust
in situ
-formed covalent polymer network together with a mesoporous inorganic film in a hybrid bulk heterojunction. |
doi_str_mv | 10.1039/d1ee00152c |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1ee00152c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528839699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-e8e53afedbc10ff22ccfe1ebca3db3447c1f2cd85e33c2b89ca0a657274b1b33</originalsourceid><addsrcrecordid>eNpFkEtLw0AUhQdRsFY37oWAO2F0Hpk8liXWBxS66T7M3LlDUtNMnUmE_nuj9bG6Z_Gdc-Ej5Jqze85k-WA5ImNcCTghM56rlKqcZae_OSvFObmIcctYJlhezsh6kTQHE1qbmLF7ow0OGPx27GFofZ_sGz943XuLifMhsW1AGJLoOx3o4Ck0uGtBdwn4_gNDnCqX5MzpLuLVz52TzdNyU73Q1fr5tVqsKEheDBQLVFI7tAY4c04IAIccDWhpjUzTHLgTYAuFUoIwRQma6UzlIk8NN1LOye1xdh_8-4hxqLd-DP30sRZKFIUss7KcqLsjBcHHGNDV-9DudDjUnNVfvupHvlx--6om-OYIhwh_3L9P-Ql0oGkb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528839699</pqid></control><display><type>article</type><title>A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yao, Liang ; Liu, Yongpeng ; Cho, Han-Hee ; Xia, Meng ; Sekar, Arvindh ; Primera Darwich, Barbara ; Wells, Rebekah A ; Yum, Jun-Ho ; Ren, Dan ; Grätzel, Michael ; Guijarro, Néstor ; Sivula, Kevin</creator><creatorcontrib>Yao, Liang ; Liu, Yongpeng ; Cho, Han-Hee ; Xia, Meng ; Sekar, Arvindh ; Primera Darwich, Barbara ; Wells, Rebekah A ; Yum, Jun-Ho ; Ren, Dan ; Grätzel, Michael ; Guijarro, Néstor ; Sivula, Kevin</creatorcontrib><description>Organic semiconductors (OSs) are emerging candidates as light-harvesting materials in photoelectrochemical (PEC) cells for direct solar-to-chemical conversion. Despite significant recent progress with OS-based photocathodes, the development of efficient and stable OS-based photoanodes remains a challenge. Here, we demonstrate the concept of an
in situ
formed covalent polymer network (CPN) in a hybrid CPN:SnO
2
bulk-heterojunction (BHJ) to increase the photocurrent density (
J
ph
) and stability of OS-based photoanodes for PEC splitting of hydroiodic acid (HI). Our results indicate that the CPN:SnO
2
BHJ overcomes the limited exciton diffusion length in OSs and provides a
J
ph
improvement of more than three orders of magnitude compared to equivalent bilayer heterojunctions. Furthermore, insight into the operation of the hybrid BHJ in direct contact with aqueous electrolyte is gained with electrochemical impedance spectroscopy and PEC measurements under varying pH. With 1 M HI (pH 0) as the electrolyte, an optimized CPN:SnO
2
photoanode without catalyst or protection layer delivers a
J
ph
of 3.3 mA cm
−2
at the thermodynamic potential of iodide oxidation (+0.54 V
vs.
the normal hydrogen electrode) and a continuous operation for 27 h (
J
ph
loss of 12%), representing a new benchmark for OS photoanodes for solar-to-chemical conversion. Complete HI splitting is further demonstrated in an all-OS photocathode/photoanode PEC cell to produce H
2
and I
3
−
from simulated sunlight without applied bias.
The development of efficient and stable organic semiconductor-based photoanodes for solar fuel production is advanced by using a robust
in situ
-formed covalent polymer network together with a mesoporous inorganic film in a hybrid bulk heterojunction.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d1ee00152c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aqueous electrolytes ; Bilayers ; Bulk density ; Catalysts ; Conversion ; Diffusion length ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrolytes ; Electrolytic cells ; Electronics industry ; Excitons ; Heterojunctions ; Iodides ; Organic semiconductors ; Oxidation ; pH effects ; Photoanodes ; Photocathodes ; Photoelectric effect ; Photoelectric emission ; Polymers ; Spectroscopy ; Splitting ; Tin dioxide</subject><ispartof>Energy & environmental science, 2021-05, Vol.14 (5), p.3141-3151</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-e8e53afedbc10ff22ccfe1ebca3db3447c1f2cd85e33c2b89ca0a657274b1b33</citedby><cites>FETCH-LOGICAL-c318t-e8e53afedbc10ff22ccfe1ebca3db3447c1f2cd85e33c2b89ca0a657274b1b33</cites><orcidid>0000-0002-8458-0270 ; 0000-0002-4544-4217 ; 0000-0003-2491-4619 ; 0000-0003-3738-6421 ; 0000-0002-3277-8816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yao, Liang</creatorcontrib><creatorcontrib>Liu, Yongpeng</creatorcontrib><creatorcontrib>Cho, Han-Hee</creatorcontrib><creatorcontrib>Xia, Meng</creatorcontrib><creatorcontrib>Sekar, Arvindh</creatorcontrib><creatorcontrib>Primera Darwich, Barbara</creatorcontrib><creatorcontrib>Wells, Rebekah A</creatorcontrib><creatorcontrib>Yum, Jun-Ho</creatorcontrib><creatorcontrib>Ren, Dan</creatorcontrib><creatorcontrib>Grätzel, Michael</creatorcontrib><creatorcontrib>Guijarro, Néstor</creatorcontrib><creatorcontrib>Sivula, Kevin</creatorcontrib><title>A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion</title><title>Energy & environmental science</title><description>Organic semiconductors (OSs) are emerging candidates as light-harvesting materials in photoelectrochemical (PEC) cells for direct solar-to-chemical conversion. Despite significant recent progress with OS-based photocathodes, the development of efficient and stable OS-based photoanodes remains a challenge. Here, we demonstrate the concept of an
in situ
formed covalent polymer network (CPN) in a hybrid CPN:SnO
2
bulk-heterojunction (BHJ) to increase the photocurrent density (
J
ph
) and stability of OS-based photoanodes for PEC splitting of hydroiodic acid (HI). Our results indicate that the CPN:SnO
2
BHJ overcomes the limited exciton diffusion length in OSs and provides a
J
ph
improvement of more than three orders of magnitude compared to equivalent bilayer heterojunctions. Furthermore, insight into the operation of the hybrid BHJ in direct contact with aqueous electrolyte is gained with electrochemical impedance spectroscopy and PEC measurements under varying pH. With 1 M HI (pH 0) as the electrolyte, an optimized CPN:SnO
2
photoanode without catalyst or protection layer delivers a
J
ph
of 3.3 mA cm
−2
at the thermodynamic potential of iodide oxidation (+0.54 V
vs.
the normal hydrogen electrode) and a continuous operation for 27 h (
J
ph
loss of 12%), representing a new benchmark for OS photoanodes for solar-to-chemical conversion. Complete HI splitting is further demonstrated in an all-OS photocathode/photoanode PEC cell to produce H
2
and I
3
−
from simulated sunlight without applied bias.
The development of efficient and stable organic semiconductor-based photoanodes for solar fuel production is advanced by using a robust
in situ
-formed covalent polymer network together with a mesoporous inorganic film in a hybrid bulk heterojunction.</description><subject>Aqueous electrolytes</subject><subject>Bilayers</subject><subject>Bulk density</subject><subject>Catalysts</subject><subject>Conversion</subject><subject>Diffusion length</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Electronics industry</subject><subject>Excitons</subject><subject>Heterojunctions</subject><subject>Iodides</subject><subject>Organic semiconductors</subject><subject>Oxidation</subject><subject>pH effects</subject><subject>Photoanodes</subject><subject>Photocathodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Polymers</subject><subject>Spectroscopy</subject><subject>Splitting</subject><subject>Tin dioxide</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLw0AUhQdRsFY37oWAO2F0Hpk8liXWBxS66T7M3LlDUtNMnUmE_nuj9bG6Z_Gdc-Ej5Jqze85k-WA5ImNcCTghM56rlKqcZae_OSvFObmIcctYJlhezsh6kTQHE1qbmLF7ow0OGPx27GFofZ_sGz943XuLifMhsW1AGJLoOx3o4Ck0uGtBdwn4_gNDnCqX5MzpLuLVz52TzdNyU73Q1fr5tVqsKEheDBQLVFI7tAY4c04IAIccDWhpjUzTHLgTYAuFUoIwRQma6UzlIk8NN1LOye1xdh_8-4hxqLd-DP30sRZKFIUss7KcqLsjBcHHGNDV-9DudDjUnNVfvupHvlx--6om-OYIhwh_3L9P-Ql0oGkb</recordid><startdate>20210519</startdate><enddate>20210519</enddate><creator>Yao, Liang</creator><creator>Liu, Yongpeng</creator><creator>Cho, Han-Hee</creator><creator>Xia, Meng</creator><creator>Sekar, Arvindh</creator><creator>Primera Darwich, Barbara</creator><creator>Wells, Rebekah A</creator><creator>Yum, Jun-Ho</creator><creator>Ren, Dan</creator><creator>Grätzel, Michael</creator><creator>Guijarro, Néstor</creator><creator>Sivula, Kevin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8458-0270</orcidid><orcidid>https://orcid.org/0000-0002-4544-4217</orcidid><orcidid>https://orcid.org/0000-0003-2491-4619</orcidid><orcidid>https://orcid.org/0000-0003-3738-6421</orcidid><orcidid>https://orcid.org/0000-0002-3277-8816</orcidid></search><sort><creationdate>20210519</creationdate><title>A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion</title><author>Yao, Liang ; Liu, Yongpeng ; Cho, Han-Hee ; Xia, Meng ; Sekar, Arvindh ; Primera Darwich, Barbara ; Wells, Rebekah A ; Yum, Jun-Ho ; Ren, Dan ; Grätzel, Michael ; Guijarro, Néstor ; Sivula, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-e8e53afedbc10ff22ccfe1ebca3db3447c1f2cd85e33c2b89ca0a657274b1b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aqueous electrolytes</topic><topic>Bilayers</topic><topic>Bulk density</topic><topic>Catalysts</topic><topic>Conversion</topic><topic>Diffusion length</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Electronics industry</topic><topic>Excitons</topic><topic>Heterojunctions</topic><topic>Iodides</topic><topic>Organic semiconductors</topic><topic>Oxidation</topic><topic>pH effects</topic><topic>Photoanodes</topic><topic>Photocathodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Polymers</topic><topic>Spectroscopy</topic><topic>Splitting</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Liang</creatorcontrib><creatorcontrib>Liu, Yongpeng</creatorcontrib><creatorcontrib>Cho, Han-Hee</creatorcontrib><creatorcontrib>Xia, Meng</creatorcontrib><creatorcontrib>Sekar, Arvindh</creatorcontrib><creatorcontrib>Primera Darwich, Barbara</creatorcontrib><creatorcontrib>Wells, Rebekah A</creatorcontrib><creatorcontrib>Yum, Jun-Ho</creatorcontrib><creatorcontrib>Ren, Dan</creatorcontrib><creatorcontrib>Grätzel, Michael</creatorcontrib><creatorcontrib>Guijarro, Néstor</creatorcontrib><creatorcontrib>Sivula, Kevin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Liang</au><au>Liu, Yongpeng</au><au>Cho, Han-Hee</au><au>Xia, Meng</au><au>Sekar, Arvindh</au><au>Primera Darwich, Barbara</au><au>Wells, Rebekah A</au><au>Yum, Jun-Ho</au><au>Ren, Dan</au><au>Grätzel, Michael</au><au>Guijarro, Néstor</au><au>Sivula, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion</atitle><jtitle>Energy & environmental science</jtitle><date>2021-05-19</date><risdate>2021</risdate><volume>14</volume><issue>5</issue><spage>3141</spage><epage>3151</epage><pages>3141-3151</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Organic semiconductors (OSs) are emerging candidates as light-harvesting materials in photoelectrochemical (PEC) cells for direct solar-to-chemical conversion. Despite significant recent progress with OS-based photocathodes, the development of efficient and stable OS-based photoanodes remains a challenge. Here, we demonstrate the concept of an
in situ
formed covalent polymer network (CPN) in a hybrid CPN:SnO
2
bulk-heterojunction (BHJ) to increase the photocurrent density (
J
ph
) and stability of OS-based photoanodes for PEC splitting of hydroiodic acid (HI). Our results indicate that the CPN:SnO
2
BHJ overcomes the limited exciton diffusion length in OSs and provides a
J
ph
improvement of more than three orders of magnitude compared to equivalent bilayer heterojunctions. Furthermore, insight into the operation of the hybrid BHJ in direct contact with aqueous electrolyte is gained with electrochemical impedance spectroscopy and PEC measurements under varying pH. With 1 M HI (pH 0) as the electrolyte, an optimized CPN:SnO
2
photoanode without catalyst or protection layer delivers a
J
ph
of 3.3 mA cm
−2
at the thermodynamic potential of iodide oxidation (+0.54 V
vs.
the normal hydrogen electrode) and a continuous operation for 27 h (
J
ph
loss of 12%), representing a new benchmark for OS photoanodes for solar-to-chemical conversion. Complete HI splitting is further demonstrated in an all-OS photocathode/photoanode PEC cell to produce H
2
and I
3
−
from simulated sunlight without applied bias.
The development of efficient and stable organic semiconductor-based photoanodes for solar fuel production is advanced by using a robust
in situ
-formed covalent polymer network together with a mesoporous inorganic film in a hybrid bulk heterojunction.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ee00152c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8458-0270</orcidid><orcidid>https://orcid.org/0000-0002-4544-4217</orcidid><orcidid>https://orcid.org/0000-0003-2491-4619</orcidid><orcidid>https://orcid.org/0000-0003-3738-6421</orcidid><orcidid>https://orcid.org/0000-0002-3277-8816</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2021-05, Vol.14 (5), p.3141-3151 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_rsc_primary_d1ee00152c |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Aqueous electrolytes Bilayers Bulk density Catalysts Conversion Diffusion length Electrochemical impedance spectroscopy Electrochemistry Electrolytes Electrolytic cells Electronics industry Excitons Heterojunctions Iodides Organic semiconductors Oxidation pH effects Photoanodes Photocathodes Photoelectric effect Photoelectric emission Polymers Spectroscopy Splitting Tin dioxide |
title | A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20bulk-heterojunction%20photoanode%20for%20direct%20solar-to-chemical%20conversion&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Yao,%20Liang&rft.date=2021-05-19&rft.volume=14&rft.issue=5&rft.spage=3141&rft.epage=3151&rft.pages=3141-3151&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d1ee00152c&rft_dat=%3Cproquest_rsc_p%3E2528839699%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528839699&rft_id=info:pmid/&rfr_iscdi=true |