A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion

Organic semiconductors (OSs) are emerging candidates as light-harvesting materials in photoelectrochemical (PEC) cells for direct solar-to-chemical conversion. Despite significant recent progress with OS-based photocathodes, the development of efficient and stable OS-based photoanodes remains a chal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2021-05, Vol.14 (5), p.3141-3151
Hauptverfasser: Yao, Liang, Liu, Yongpeng, Cho, Han-Hee, Xia, Meng, Sekar, Arvindh, Primera Darwich, Barbara, Wells, Rebekah A, Yum, Jun-Ho, Ren, Dan, Grätzel, Michael, Guijarro, Néstor, Sivula, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3151
container_issue 5
container_start_page 3141
container_title Energy & environmental science
container_volume 14
creator Yao, Liang
Liu, Yongpeng
Cho, Han-Hee
Xia, Meng
Sekar, Arvindh
Primera Darwich, Barbara
Wells, Rebekah A
Yum, Jun-Ho
Ren, Dan
Grätzel, Michael
Guijarro, Néstor
Sivula, Kevin
description Organic semiconductors (OSs) are emerging candidates as light-harvesting materials in photoelectrochemical (PEC) cells for direct solar-to-chemical conversion. Despite significant recent progress with OS-based photocathodes, the development of efficient and stable OS-based photoanodes remains a challenge. Here, we demonstrate the concept of an in situ formed covalent polymer network (CPN) in a hybrid CPN:SnO 2 bulk-heterojunction (BHJ) to increase the photocurrent density ( J ph ) and stability of OS-based photoanodes for PEC splitting of hydroiodic acid (HI). Our results indicate that the CPN:SnO 2 BHJ overcomes the limited exciton diffusion length in OSs and provides a J ph improvement of more than three orders of magnitude compared to equivalent bilayer heterojunctions. Furthermore, insight into the operation of the hybrid BHJ in direct contact with aqueous electrolyte is gained with electrochemical impedance spectroscopy and PEC measurements under varying pH. With 1 M HI (pH 0) as the electrolyte, an optimized CPN:SnO 2 photoanode without catalyst or protection layer delivers a J ph of 3.3 mA cm −2 at the thermodynamic potential of iodide oxidation (+0.54 V vs. the normal hydrogen electrode) and a continuous operation for 27 h ( J ph loss of 12%), representing a new benchmark for OS photoanodes for solar-to-chemical conversion. Complete HI splitting is further demonstrated in an all-OS photocathode/photoanode PEC cell to produce H 2 and I 3 − from simulated sunlight without applied bias. The development of efficient and stable organic semiconductor-based photoanodes for solar fuel production is advanced by using a robust in situ -formed covalent polymer network together with a mesoporous inorganic film in a hybrid bulk heterojunction.
doi_str_mv 10.1039/d1ee00152c
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1ee00152c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528839699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-e8e53afedbc10ff22ccfe1ebca3db3447c1f2cd85e33c2b89ca0a657274b1b33</originalsourceid><addsrcrecordid>eNpFkEtLw0AUhQdRsFY37oWAO2F0Hpk8liXWBxS66T7M3LlDUtNMnUmE_nuj9bG6Z_Gdc-Ej5Jqze85k-WA5ImNcCTghM56rlKqcZae_OSvFObmIcctYJlhezsh6kTQHE1qbmLF7ow0OGPx27GFofZ_sGz943XuLifMhsW1AGJLoOx3o4Ck0uGtBdwn4_gNDnCqX5MzpLuLVz52TzdNyU73Q1fr5tVqsKEheDBQLVFI7tAY4c04IAIccDWhpjUzTHLgTYAuFUoIwRQma6UzlIk8NN1LOye1xdh_8-4hxqLd-DP30sRZKFIUss7KcqLsjBcHHGNDV-9DudDjUnNVfvupHvlx--6om-OYIhwh_3L9P-Ql0oGkb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528839699</pqid></control><display><type>article</type><title>A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yao, Liang ; Liu, Yongpeng ; Cho, Han-Hee ; Xia, Meng ; Sekar, Arvindh ; Primera Darwich, Barbara ; Wells, Rebekah A ; Yum, Jun-Ho ; Ren, Dan ; Grätzel, Michael ; Guijarro, Néstor ; Sivula, Kevin</creator><creatorcontrib>Yao, Liang ; Liu, Yongpeng ; Cho, Han-Hee ; Xia, Meng ; Sekar, Arvindh ; Primera Darwich, Barbara ; Wells, Rebekah A ; Yum, Jun-Ho ; Ren, Dan ; Grätzel, Michael ; Guijarro, Néstor ; Sivula, Kevin</creatorcontrib><description>Organic semiconductors (OSs) are emerging candidates as light-harvesting materials in photoelectrochemical (PEC) cells for direct solar-to-chemical conversion. Despite significant recent progress with OS-based photocathodes, the development of efficient and stable OS-based photoanodes remains a challenge. Here, we demonstrate the concept of an in situ formed covalent polymer network (CPN) in a hybrid CPN:SnO 2 bulk-heterojunction (BHJ) to increase the photocurrent density ( J ph ) and stability of OS-based photoanodes for PEC splitting of hydroiodic acid (HI). Our results indicate that the CPN:SnO 2 BHJ overcomes the limited exciton diffusion length in OSs and provides a J ph improvement of more than three orders of magnitude compared to equivalent bilayer heterojunctions. Furthermore, insight into the operation of the hybrid BHJ in direct contact with aqueous electrolyte is gained with electrochemical impedance spectroscopy and PEC measurements under varying pH. With 1 M HI (pH 0) as the electrolyte, an optimized CPN:SnO 2 photoanode without catalyst or protection layer delivers a J ph of 3.3 mA cm −2 at the thermodynamic potential of iodide oxidation (+0.54 V vs. the normal hydrogen electrode) and a continuous operation for 27 h ( J ph loss of 12%), representing a new benchmark for OS photoanodes for solar-to-chemical conversion. Complete HI splitting is further demonstrated in an all-OS photocathode/photoanode PEC cell to produce H 2 and I 3 − from simulated sunlight without applied bias. The development of efficient and stable organic semiconductor-based photoanodes for solar fuel production is advanced by using a robust in situ -formed covalent polymer network together with a mesoporous inorganic film in a hybrid bulk heterojunction.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d1ee00152c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aqueous electrolytes ; Bilayers ; Bulk density ; Catalysts ; Conversion ; Diffusion length ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrolytes ; Electrolytic cells ; Electronics industry ; Excitons ; Heterojunctions ; Iodides ; Organic semiconductors ; Oxidation ; pH effects ; Photoanodes ; Photocathodes ; Photoelectric effect ; Photoelectric emission ; Polymers ; Spectroscopy ; Splitting ; Tin dioxide</subject><ispartof>Energy &amp; environmental science, 2021-05, Vol.14 (5), p.3141-3151</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-e8e53afedbc10ff22ccfe1ebca3db3447c1f2cd85e33c2b89ca0a657274b1b33</citedby><cites>FETCH-LOGICAL-c318t-e8e53afedbc10ff22ccfe1ebca3db3447c1f2cd85e33c2b89ca0a657274b1b33</cites><orcidid>0000-0002-8458-0270 ; 0000-0002-4544-4217 ; 0000-0003-2491-4619 ; 0000-0003-3738-6421 ; 0000-0002-3277-8816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yao, Liang</creatorcontrib><creatorcontrib>Liu, Yongpeng</creatorcontrib><creatorcontrib>Cho, Han-Hee</creatorcontrib><creatorcontrib>Xia, Meng</creatorcontrib><creatorcontrib>Sekar, Arvindh</creatorcontrib><creatorcontrib>Primera Darwich, Barbara</creatorcontrib><creatorcontrib>Wells, Rebekah A</creatorcontrib><creatorcontrib>Yum, Jun-Ho</creatorcontrib><creatorcontrib>Ren, Dan</creatorcontrib><creatorcontrib>Grätzel, Michael</creatorcontrib><creatorcontrib>Guijarro, Néstor</creatorcontrib><creatorcontrib>Sivula, Kevin</creatorcontrib><title>A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion</title><title>Energy &amp; environmental science</title><description>Organic semiconductors (OSs) are emerging candidates as light-harvesting materials in photoelectrochemical (PEC) cells for direct solar-to-chemical conversion. Despite significant recent progress with OS-based photocathodes, the development of efficient and stable OS-based photoanodes remains a challenge. Here, we demonstrate the concept of an in situ formed covalent polymer network (CPN) in a hybrid CPN:SnO 2 bulk-heterojunction (BHJ) to increase the photocurrent density ( J ph ) and stability of OS-based photoanodes for PEC splitting of hydroiodic acid (HI). Our results indicate that the CPN:SnO 2 BHJ overcomes the limited exciton diffusion length in OSs and provides a J ph improvement of more than three orders of magnitude compared to equivalent bilayer heterojunctions. Furthermore, insight into the operation of the hybrid BHJ in direct contact with aqueous electrolyte is gained with electrochemical impedance spectroscopy and PEC measurements under varying pH. With 1 M HI (pH 0) as the electrolyte, an optimized CPN:SnO 2 photoanode without catalyst or protection layer delivers a J ph of 3.3 mA cm −2 at the thermodynamic potential of iodide oxidation (+0.54 V vs. the normal hydrogen electrode) and a continuous operation for 27 h ( J ph loss of 12%), representing a new benchmark for OS photoanodes for solar-to-chemical conversion. Complete HI splitting is further demonstrated in an all-OS photocathode/photoanode PEC cell to produce H 2 and I 3 − from simulated sunlight without applied bias. The development of efficient and stable organic semiconductor-based photoanodes for solar fuel production is advanced by using a robust in situ -formed covalent polymer network together with a mesoporous inorganic film in a hybrid bulk heterojunction.</description><subject>Aqueous electrolytes</subject><subject>Bilayers</subject><subject>Bulk density</subject><subject>Catalysts</subject><subject>Conversion</subject><subject>Diffusion length</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Electronics industry</subject><subject>Excitons</subject><subject>Heterojunctions</subject><subject>Iodides</subject><subject>Organic semiconductors</subject><subject>Oxidation</subject><subject>pH effects</subject><subject>Photoanodes</subject><subject>Photocathodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Polymers</subject><subject>Spectroscopy</subject><subject>Splitting</subject><subject>Tin dioxide</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLw0AUhQdRsFY37oWAO2F0Hpk8liXWBxS66T7M3LlDUtNMnUmE_nuj9bG6Z_Gdc-Ej5Jqze85k-WA5ImNcCTghM56rlKqcZae_OSvFObmIcctYJlhezsh6kTQHE1qbmLF7ow0OGPx27GFofZ_sGz943XuLifMhsW1AGJLoOx3o4Ck0uGtBdwn4_gNDnCqX5MzpLuLVz52TzdNyU73Q1fr5tVqsKEheDBQLVFI7tAY4c04IAIccDWhpjUzTHLgTYAuFUoIwRQma6UzlIk8NN1LOye1xdh_8-4hxqLd-DP30sRZKFIUss7KcqLsjBcHHGNDV-9DudDjUnNVfvupHvlx--6om-OYIhwh_3L9P-Ql0oGkb</recordid><startdate>20210519</startdate><enddate>20210519</enddate><creator>Yao, Liang</creator><creator>Liu, Yongpeng</creator><creator>Cho, Han-Hee</creator><creator>Xia, Meng</creator><creator>Sekar, Arvindh</creator><creator>Primera Darwich, Barbara</creator><creator>Wells, Rebekah A</creator><creator>Yum, Jun-Ho</creator><creator>Ren, Dan</creator><creator>Grätzel, Michael</creator><creator>Guijarro, Néstor</creator><creator>Sivula, Kevin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8458-0270</orcidid><orcidid>https://orcid.org/0000-0002-4544-4217</orcidid><orcidid>https://orcid.org/0000-0003-2491-4619</orcidid><orcidid>https://orcid.org/0000-0003-3738-6421</orcidid><orcidid>https://orcid.org/0000-0002-3277-8816</orcidid></search><sort><creationdate>20210519</creationdate><title>A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion</title><author>Yao, Liang ; Liu, Yongpeng ; Cho, Han-Hee ; Xia, Meng ; Sekar, Arvindh ; Primera Darwich, Barbara ; Wells, Rebekah A ; Yum, Jun-Ho ; Ren, Dan ; Grätzel, Michael ; Guijarro, Néstor ; Sivula, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-e8e53afedbc10ff22ccfe1ebca3db3447c1f2cd85e33c2b89ca0a657274b1b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aqueous electrolytes</topic><topic>Bilayers</topic><topic>Bulk density</topic><topic>Catalysts</topic><topic>Conversion</topic><topic>Diffusion length</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Electronics industry</topic><topic>Excitons</topic><topic>Heterojunctions</topic><topic>Iodides</topic><topic>Organic semiconductors</topic><topic>Oxidation</topic><topic>pH effects</topic><topic>Photoanodes</topic><topic>Photocathodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Polymers</topic><topic>Spectroscopy</topic><topic>Splitting</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Liang</creatorcontrib><creatorcontrib>Liu, Yongpeng</creatorcontrib><creatorcontrib>Cho, Han-Hee</creatorcontrib><creatorcontrib>Xia, Meng</creatorcontrib><creatorcontrib>Sekar, Arvindh</creatorcontrib><creatorcontrib>Primera Darwich, Barbara</creatorcontrib><creatorcontrib>Wells, Rebekah A</creatorcontrib><creatorcontrib>Yum, Jun-Ho</creatorcontrib><creatorcontrib>Ren, Dan</creatorcontrib><creatorcontrib>Grätzel, Michael</creatorcontrib><creatorcontrib>Guijarro, Néstor</creatorcontrib><creatorcontrib>Sivula, Kevin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Liang</au><au>Liu, Yongpeng</au><au>Cho, Han-Hee</au><au>Xia, Meng</au><au>Sekar, Arvindh</au><au>Primera Darwich, Barbara</au><au>Wells, Rebekah A</au><au>Yum, Jun-Ho</au><au>Ren, Dan</au><au>Grätzel, Michael</au><au>Guijarro, Néstor</au><au>Sivula, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2021-05-19</date><risdate>2021</risdate><volume>14</volume><issue>5</issue><spage>3141</spage><epage>3151</epage><pages>3141-3151</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Organic semiconductors (OSs) are emerging candidates as light-harvesting materials in photoelectrochemical (PEC) cells for direct solar-to-chemical conversion. Despite significant recent progress with OS-based photocathodes, the development of efficient and stable OS-based photoanodes remains a challenge. Here, we demonstrate the concept of an in situ formed covalent polymer network (CPN) in a hybrid CPN:SnO 2 bulk-heterojunction (BHJ) to increase the photocurrent density ( J ph ) and stability of OS-based photoanodes for PEC splitting of hydroiodic acid (HI). Our results indicate that the CPN:SnO 2 BHJ overcomes the limited exciton diffusion length in OSs and provides a J ph improvement of more than three orders of magnitude compared to equivalent bilayer heterojunctions. Furthermore, insight into the operation of the hybrid BHJ in direct contact with aqueous electrolyte is gained with electrochemical impedance spectroscopy and PEC measurements under varying pH. With 1 M HI (pH 0) as the electrolyte, an optimized CPN:SnO 2 photoanode without catalyst or protection layer delivers a J ph of 3.3 mA cm −2 at the thermodynamic potential of iodide oxidation (+0.54 V vs. the normal hydrogen electrode) and a continuous operation for 27 h ( J ph loss of 12%), representing a new benchmark for OS photoanodes for solar-to-chemical conversion. Complete HI splitting is further demonstrated in an all-OS photocathode/photoanode PEC cell to produce H 2 and I 3 − from simulated sunlight without applied bias. The development of efficient and stable organic semiconductor-based photoanodes for solar fuel production is advanced by using a robust in situ -formed covalent polymer network together with a mesoporous inorganic film in a hybrid bulk heterojunction.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ee00152c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8458-0270</orcidid><orcidid>https://orcid.org/0000-0002-4544-4217</orcidid><orcidid>https://orcid.org/0000-0003-2491-4619</orcidid><orcidid>https://orcid.org/0000-0003-3738-6421</orcidid><orcidid>https://orcid.org/0000-0002-3277-8816</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2021-05, Vol.14 (5), p.3141-3151
issn 1754-5692
1754-5706
language eng
recordid cdi_rsc_primary_d1ee00152c
source Royal Society Of Chemistry Journals 2008-
subjects Aqueous electrolytes
Bilayers
Bulk density
Catalysts
Conversion
Diffusion length
Electrochemical impedance spectroscopy
Electrochemistry
Electrolytes
Electrolytic cells
Electronics industry
Excitons
Heterojunctions
Iodides
Organic semiconductors
Oxidation
pH effects
Photoanodes
Photocathodes
Photoelectric effect
Photoelectric emission
Polymers
Spectroscopy
Splitting
Tin dioxide
title A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20bulk-heterojunction%20photoanode%20for%20direct%20solar-to-chemical%20conversion&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Yao,%20Liang&rft.date=2021-05-19&rft.volume=14&rft.issue=5&rft.spage=3141&rft.epage=3151&rft.pages=3141-3151&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d1ee00152c&rft_dat=%3Cproquest_rsc_p%3E2528839699%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528839699&rft_id=info:pmid/&rfr_iscdi=true