Strain modulation on the spin transport properties of PTB junctions with MoC electrodes

Based on MoC 2 nanoribbons and poly-(terphenylene-butadiynylene) (PTB) molecules, we designed MoC 2 -PTB molecular spintronic devices and investigated their spin-dependent electron transport properties by using spin-polarized density functional theory and the non-equilibrium Green's function me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-02, Vol.24 (6), p.3875-3885
Hauptverfasser: Sun, Yaoxing, Zhang, Bei, Zhang, Shidong, Zhang, Dan, Dong, Jiwei, Long, Mengqiu
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3885
container_issue 6
container_start_page 3875
container_title Physical chemistry chemical physics : PCCP
container_volume 24
creator Sun, Yaoxing
Zhang, Bei
Zhang, Shidong
Zhang, Dan
Dong, Jiwei
Long, Mengqiu
description Based on MoC 2 nanoribbons and poly-(terphenylene-butadiynylene) (PTB) molecules, we designed MoC 2 -PTB molecular spintronic devices and investigated their spin-dependent electron transport properties by using spin-polarized density functional theory and the non-equilibrium Green's function method. As a typical MXene material, it is found that the magnetic contribution of MoC 2 nanoribbons mainly comes from the delocalized 3d electron of edge Mo atoms. Owing to the obvious spin-splitting near the Fermi level of the MoC 2 nanoribbon electrode, the spin states can be effectively injected into the central scattering region under an external bias voltage. In addition, we also studied the effects of z -axis strain on the spin transport properties of the PTB molecular device, where the strain was controlled within the range of −9% to 9%. Under a compressed strain, spin current increases obviously, and the spin-filtering efficiency (SFE) decreases slightly. Nevertheless, under a tensile strain, we found that the SFE increases but spin current decreases. Moreover, z -axis strain can induce a negative differential resistance (NDR) effect at a high bias point. This work would expand the potential applications of new two-dimensional (2D) materials in the field of molecular spintronic devices. The z -axial strain can effectively regulate the intensity of spin polarization current and spin filtering efficiency (SFE), and introduce a negative differential resistance (NDR) effect.
doi_str_mv 10.1039/d1cp04563f
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d1cp04563f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d1cp04563f</sourcerecordid><originalsourceid>FETCH-rsc_primary_d1cp04563f3</originalsourceid><addsrcrecordid>eNqFjk0LgkAYhJcoyD4u3YP3D1i7rFpek6JLECR0lEVXXFF32Xcl-vcZRB2DgRnmYWAIWTG6YZTH24LlhgZhxMsR8VgQcT-m-2D8zbtoSmaINaWUhYx75H5zVqgOWl30jXBKdzDIVRLQDPUAOzTaOjBWG2mdkgi6hGt6gLrv8vcA4aFcBRedgGxk7qwuJC7IpBQNyuXH52R9OqbJ2beYZ8aqVthn9nvL__EXMkpD0A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strain modulation on the spin transport properties of PTB junctions with MoC electrodes</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Sun, Yaoxing ; Zhang, Bei ; Zhang, Shidong ; Zhang, Dan ; Dong, Jiwei ; Long, Mengqiu</creator><creatorcontrib>Sun, Yaoxing ; Zhang, Bei ; Zhang, Shidong ; Zhang, Dan ; Dong, Jiwei ; Long, Mengqiu</creatorcontrib><description>Based on MoC 2 nanoribbons and poly-(terphenylene-butadiynylene) (PTB) molecules, we designed MoC 2 -PTB molecular spintronic devices and investigated their spin-dependent electron transport properties by using spin-polarized density functional theory and the non-equilibrium Green's function method. As a typical MXene material, it is found that the magnetic contribution of MoC 2 nanoribbons mainly comes from the delocalized 3d electron of edge Mo atoms. Owing to the obvious spin-splitting near the Fermi level of the MoC 2 nanoribbon electrode, the spin states can be effectively injected into the central scattering region under an external bias voltage. In addition, we also studied the effects of z -axis strain on the spin transport properties of the PTB molecular device, where the strain was controlled within the range of −9% to 9%. Under a compressed strain, spin current increases obviously, and the spin-filtering efficiency (SFE) decreases slightly. Nevertheless, under a tensile strain, we found that the SFE increases but spin current decreases. Moreover, z -axis strain can induce a negative differential resistance (NDR) effect at a high bias point. This work would expand the potential applications of new two-dimensional (2D) materials in the field of molecular spintronic devices. The z -axial strain can effectively regulate the intensity of spin polarization current and spin filtering efficiency (SFE), and introduce a negative differential resistance (NDR) effect.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp04563f</identifier><ispartof>Physical chemistry chemical physics : PCCP, 2022-02, Vol.24 (6), p.3875-3885</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Sun, Yaoxing</creatorcontrib><creatorcontrib>Zhang, Bei</creatorcontrib><creatorcontrib>Zhang, Shidong</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><creatorcontrib>Dong, Jiwei</creatorcontrib><creatorcontrib>Long, Mengqiu</creatorcontrib><title>Strain modulation on the spin transport properties of PTB junctions with MoC electrodes</title><title>Physical chemistry chemical physics : PCCP</title><description>Based on MoC 2 nanoribbons and poly-(terphenylene-butadiynylene) (PTB) molecules, we designed MoC 2 -PTB molecular spintronic devices and investigated their spin-dependent electron transport properties by using spin-polarized density functional theory and the non-equilibrium Green's function method. As a typical MXene material, it is found that the magnetic contribution of MoC 2 nanoribbons mainly comes from the delocalized 3d electron of edge Mo atoms. Owing to the obvious spin-splitting near the Fermi level of the MoC 2 nanoribbon electrode, the spin states can be effectively injected into the central scattering region under an external bias voltage. In addition, we also studied the effects of z -axis strain on the spin transport properties of the PTB molecular device, where the strain was controlled within the range of −9% to 9%. Under a compressed strain, spin current increases obviously, and the spin-filtering efficiency (SFE) decreases slightly. Nevertheless, under a tensile strain, we found that the SFE increases but spin current decreases. Moreover, z -axis strain can induce a negative differential resistance (NDR) effect at a high bias point. This work would expand the potential applications of new two-dimensional (2D) materials in the field of molecular spintronic devices. The z -axial strain can effectively regulate the intensity of spin polarization current and spin filtering efficiency (SFE), and introduce a negative differential resistance (NDR) effect.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjk0LgkAYhJcoyD4u3YP3D1i7rFpek6JLECR0lEVXXFF32Xcl-vcZRB2DgRnmYWAIWTG6YZTH24LlhgZhxMsR8VgQcT-m-2D8zbtoSmaINaWUhYx75H5zVqgOWl30jXBKdzDIVRLQDPUAOzTaOjBWG2mdkgi6hGt6gLrv8vcA4aFcBRedgGxk7qwuJC7IpBQNyuXH52R9OqbJ2beYZ8aqVthn9nvL__EXMkpD0A</recordid><startdate>20220209</startdate><enddate>20220209</enddate><creator>Sun, Yaoxing</creator><creator>Zhang, Bei</creator><creator>Zhang, Shidong</creator><creator>Zhang, Dan</creator><creator>Dong, Jiwei</creator><creator>Long, Mengqiu</creator><scope/></search><sort><creationdate>20220209</creationdate><title>Strain modulation on the spin transport properties of PTB junctions with MoC electrodes</title><author>Sun, Yaoxing ; Zhang, Bei ; Zhang, Shidong ; Zhang, Dan ; Dong, Jiwei ; Long, Mengqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d1cp04563f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yaoxing</creatorcontrib><creatorcontrib>Zhang, Bei</creatorcontrib><creatorcontrib>Zhang, Shidong</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><creatorcontrib>Dong, Jiwei</creatorcontrib><creatorcontrib>Long, Mengqiu</creatorcontrib><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yaoxing</au><au>Zhang, Bei</au><au>Zhang, Shidong</au><au>Zhang, Dan</au><au>Dong, Jiwei</au><au>Long, Mengqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain modulation on the spin transport properties of PTB junctions with MoC electrodes</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-02-09</date><risdate>2022</risdate><volume>24</volume><issue>6</issue><spage>3875</spage><epage>3885</epage><pages>3875-3885</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Based on MoC 2 nanoribbons and poly-(terphenylene-butadiynylene) (PTB) molecules, we designed MoC 2 -PTB molecular spintronic devices and investigated their spin-dependent electron transport properties by using spin-polarized density functional theory and the non-equilibrium Green's function method. As a typical MXene material, it is found that the magnetic contribution of MoC 2 nanoribbons mainly comes from the delocalized 3d electron of edge Mo atoms. Owing to the obvious spin-splitting near the Fermi level of the MoC 2 nanoribbon electrode, the spin states can be effectively injected into the central scattering region under an external bias voltage. In addition, we also studied the effects of z -axis strain on the spin transport properties of the PTB molecular device, where the strain was controlled within the range of −9% to 9%. Under a compressed strain, spin current increases obviously, and the spin-filtering efficiency (SFE) decreases slightly. Nevertheless, under a tensile strain, we found that the SFE increases but spin current decreases. Moreover, z -axis strain can induce a negative differential resistance (NDR) effect at a high bias point. This work would expand the potential applications of new two-dimensional (2D) materials in the field of molecular spintronic devices. The z -axial strain can effectively regulate the intensity of spin polarization current and spin filtering efficiency (SFE), and introduce a negative differential resistance (NDR) effect.</abstract><doi>10.1039/d1cp04563f</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2022-02, Vol.24 (6), p.3875-3885
issn 1463-9076
1463-9084
language
recordid cdi_rsc_primary_d1cp04563f
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
title Strain modulation on the spin transport properties of PTB junctions with MoC electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20modulation%20on%20the%20spin%20transport%20properties%20of%20PTB%20junctions%20with%20MoC%20electrodes&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Sun,%20Yaoxing&rft.date=2022-02-09&rft.volume=24&rft.issue=6&rft.spage=3875&rft.epage=3885&rft.pages=3875-3885&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp04563f&rft_dat=%3Crsc%3Ed1cp04563f%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true