Exploring promising gas sensing and highly active catalysts for CO oxidation: transition-metal (Fe, Co and Ni) adsorbed Janus MoSSe monolayers

From first-principles calculations, the transition-metal (TM) atom (Fe, Co and Ni) adsorbed Janus MoSSe monolayer, toxic gas molecules (CO, NH 3 and H 2 S) adsorbed on the Ni-MoSSe monolayer and CO catalytic oxidation on the Fe-MoSSe monolayer are systematically investigated. An increasing order (Fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2021-05, Vol.23 (18), p.114-1114
Hauptverfasser: Guo, Jia-Xing, Wu, Shao-Yi, Zhong, Si-Ying, Zhang, Gao-Jun, Yu, Xing-Yuan, Wu, Li-Na
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1114
container_issue 18
container_start_page 114
container_title Physical chemistry chemical physics : PCCP
container_volume 23
creator Guo, Jia-Xing
Wu, Shao-Yi
Zhong, Si-Ying
Zhang, Gao-Jun
Yu, Xing-Yuan
Wu, Li-Na
description From first-principles calculations, the transition-metal (TM) atom (Fe, Co and Ni) adsorbed Janus MoSSe monolayer, toxic gas molecules (CO, NH 3 and H 2 S) adsorbed on the Ni-MoSSe monolayer and CO catalytic oxidation on the Fe-MoSSe monolayer are systematically investigated. An increasing order (Fe-MoSSe < Co-MoSSe < Ni-MoSSe) is found for the stability and band gap of the TM atom adsorbed Janus MoSSe monolayer. These toxic gas molecules are found to be weakly physisorbed and strongly chemisorbed on the pristine and Ni-MoSSe monolayers, respectively. The electronic structure and gas molecular adsorption properties of the Janus MoSSe monolayer can be modulated by adsorbing different TM atoms and gas molecules. Particularly, the CO catalytic oxidation can be realized on the Fe-MoSSe monolayer in light of the more preferable Eley-Rideal (ER) mechanism with the two-step route (CO + O 2 → OOCO → CO 2 + O ads , CO + O ads → CO 2 ) with highly exothermic processes in each step. The adsorption of TM atoms which may greatly enhance gas sensing performance and catalytic performance of CO oxidation based on the Janus MoSSe monolayer is further discussed. From first-principles calculations, the transition-metal (TM) atom (Fe, Co and Ni) adsorbed Janus MoSSe monolayer, toxic gas molecules (CO, NH 3 and H 2 S) adsorbed on Ni-MoSSe monolayers and CO catalytic oxidation on Fe-MoSSe monolayers are systematically investigated.
doi_str_mv 10.1039/d1cp00994j
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1cp00994j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525655838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-81afa90ca1a9cdbe22107081795572d4b98ba64e9025488b10e659c41c10f4b53</originalsourceid><addsrcrecordid>eNpFkctOwzAQRS0EouWxYQ-yxAYQATu2k5gdCpSHCkUC1tHEcdpUSVzsFLU_wTeTPiirudKcuaO5g9ARJVeUMHmdUTUhREo-3kJdygPmSRLx7Y0Ogw7ac25MCKGCsl3UYUxyvx3top_72aQ0tqiHeGJNVbiFGoLDTtdLDXWGR8VwVM4xqKb41lhBA-XcNQ7nxuJ4gM2syKApTH2DGwvt2EJ7lW4xfNbTlzg2S5vX4hxD5oxNdYafoZ46_GLe3zWuTG1KmGvrDtBODqXTh-u6jz579x_xo9cfPDzFt31PsZA3XkQhB0kUUJAqS7XvUxKSiIZSiNDPeCqjFAKuJfEFj6KUEh0IqThVlOQ8FWwfna5826O_pto1ydhMbd2uTHzhi0CIiEUtdbGilDXOWZ0nE1tUYOcJJcki-uSOxm_L6J9b-GRtOU0rnW3Qv6xb4HgFWKc23f_fsV8QNYjH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525655838</pqid></control><display><type>article</type><title>Exploring promising gas sensing and highly active catalysts for CO oxidation: transition-metal (Fe, Co and Ni) adsorbed Janus MoSSe monolayers</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Guo, Jia-Xing ; Wu, Shao-Yi ; Zhong, Si-Ying ; Zhang, Gao-Jun ; Yu, Xing-Yuan ; Wu, Li-Na</creator><creatorcontrib>Guo, Jia-Xing ; Wu, Shao-Yi ; Zhong, Si-Ying ; Zhang, Gao-Jun ; Yu, Xing-Yuan ; Wu, Li-Na</creatorcontrib><description>From first-principles calculations, the transition-metal (TM) atom (Fe, Co and Ni) adsorbed Janus MoSSe monolayer, toxic gas molecules (CO, NH 3 and H 2 S) adsorbed on the Ni-MoSSe monolayer and CO catalytic oxidation on the Fe-MoSSe monolayer are systematically investigated. An increasing order (Fe-MoSSe &lt; Co-MoSSe &lt; Ni-MoSSe) is found for the stability and band gap of the TM atom adsorbed Janus MoSSe monolayer. These toxic gas molecules are found to be weakly physisorbed and strongly chemisorbed on the pristine and Ni-MoSSe monolayers, respectively. The electronic structure and gas molecular adsorption properties of the Janus MoSSe monolayer can be modulated by adsorbing different TM atoms and gas molecules. Particularly, the CO catalytic oxidation can be realized on the Fe-MoSSe monolayer in light of the more preferable Eley-Rideal (ER) mechanism with the two-step route (CO + O 2 → OOCO → CO 2 + O ads , CO + O ads → CO 2 ) with highly exothermic processes in each step. The adsorption of TM atoms which may greatly enhance gas sensing performance and catalytic performance of CO oxidation based on the Janus MoSSe monolayer is further discussed. From first-principles calculations, the transition-metal (TM) atom (Fe, Co and Ni) adsorbed Janus MoSSe monolayer, toxic gas molecules (CO, NH 3 and H 2 S) adsorbed on Ni-MoSSe monolayers and CO catalytic oxidation on Fe-MoSSe monolayers are systematically investigated.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp00994j</identifier><identifier>PMID: 33942039</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adsorption ; Ammonia ; Carbon dioxide ; Carbon monoxide ; Catalytic oxidation ; Cobalt ; Electronic structure ; First principles ; Gas sensors ; Hydrogen sulfide ; Iron ; Molecular structure ; Monolayers ; Nickel ; Oxidation ; Transition metals</subject><ispartof>Physical chemistry chemical physics : PCCP, 2021-05, Vol.23 (18), p.114-1114</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-81afa90ca1a9cdbe22107081795572d4b98ba64e9025488b10e659c41c10f4b53</citedby><cites>FETCH-LOGICAL-c374t-81afa90ca1a9cdbe22107081795572d4b98ba64e9025488b10e659c41c10f4b53</cites><orcidid>0000-0003-0947-8337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33942039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jia-Xing</creatorcontrib><creatorcontrib>Wu, Shao-Yi</creatorcontrib><creatorcontrib>Zhong, Si-Ying</creatorcontrib><creatorcontrib>Zhang, Gao-Jun</creatorcontrib><creatorcontrib>Yu, Xing-Yuan</creatorcontrib><creatorcontrib>Wu, Li-Na</creatorcontrib><title>Exploring promising gas sensing and highly active catalysts for CO oxidation: transition-metal (Fe, Co and Ni) adsorbed Janus MoSSe monolayers</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>From first-principles calculations, the transition-metal (TM) atom (Fe, Co and Ni) adsorbed Janus MoSSe monolayer, toxic gas molecules (CO, NH 3 and H 2 S) adsorbed on the Ni-MoSSe monolayer and CO catalytic oxidation on the Fe-MoSSe monolayer are systematically investigated. An increasing order (Fe-MoSSe &lt; Co-MoSSe &lt; Ni-MoSSe) is found for the stability and band gap of the TM atom adsorbed Janus MoSSe monolayer. These toxic gas molecules are found to be weakly physisorbed and strongly chemisorbed on the pristine and Ni-MoSSe monolayers, respectively. The electronic structure and gas molecular adsorption properties of the Janus MoSSe monolayer can be modulated by adsorbing different TM atoms and gas molecules. Particularly, the CO catalytic oxidation can be realized on the Fe-MoSSe monolayer in light of the more preferable Eley-Rideal (ER) mechanism with the two-step route (CO + O 2 → OOCO → CO 2 + O ads , CO + O ads → CO 2 ) with highly exothermic processes in each step. The adsorption of TM atoms which may greatly enhance gas sensing performance and catalytic performance of CO oxidation based on the Janus MoSSe monolayer is further discussed. From first-principles calculations, the transition-metal (TM) atom (Fe, Co and Ni) adsorbed Janus MoSSe monolayer, toxic gas molecules (CO, NH 3 and H 2 S) adsorbed on Ni-MoSSe monolayers and CO catalytic oxidation on Fe-MoSSe monolayers are systematically investigated.</description><subject>Adsorption</subject><subject>Ammonia</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalytic oxidation</subject><subject>Cobalt</subject><subject>Electronic structure</subject><subject>First principles</subject><subject>Gas sensors</subject><subject>Hydrogen sulfide</subject><subject>Iron</subject><subject>Molecular structure</subject><subject>Monolayers</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Transition metals</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkctOwzAQRS0EouWxYQ-yxAYQATu2k5gdCpSHCkUC1tHEcdpUSVzsFLU_wTeTPiirudKcuaO5g9ARJVeUMHmdUTUhREo-3kJdygPmSRLx7Y0Ogw7ac25MCKGCsl3UYUxyvx3top_72aQ0tqiHeGJNVbiFGoLDTtdLDXWGR8VwVM4xqKb41lhBA-XcNQ7nxuJ4gM2syKApTH2DGwvt2EJ7lW4xfNbTlzg2S5vX4hxD5oxNdYafoZ46_GLe3zWuTG1KmGvrDtBODqXTh-u6jz579x_xo9cfPDzFt31PsZA3XkQhB0kUUJAqS7XvUxKSiIZSiNDPeCqjFAKuJfEFj6KUEh0IqThVlOQ8FWwfna5826O_pto1ydhMbd2uTHzhi0CIiEUtdbGilDXOWZ0nE1tUYOcJJcki-uSOxm_L6J9b-GRtOU0rnW3Qv6xb4HgFWKc23f_fsV8QNYjH</recordid><startdate>20210512</startdate><enddate>20210512</enddate><creator>Guo, Jia-Xing</creator><creator>Wu, Shao-Yi</creator><creator>Zhong, Si-Ying</creator><creator>Zhang, Gao-Jun</creator><creator>Yu, Xing-Yuan</creator><creator>Wu, Li-Na</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0947-8337</orcidid></search><sort><creationdate>20210512</creationdate><title>Exploring promising gas sensing and highly active catalysts for CO oxidation: transition-metal (Fe, Co and Ni) adsorbed Janus MoSSe monolayers</title><author>Guo, Jia-Xing ; Wu, Shao-Yi ; Zhong, Si-Ying ; Zhang, Gao-Jun ; Yu, Xing-Yuan ; Wu, Li-Na</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-81afa90ca1a9cdbe22107081795572d4b98ba64e9025488b10e659c41c10f4b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Ammonia</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalytic oxidation</topic><topic>Cobalt</topic><topic>Electronic structure</topic><topic>First principles</topic><topic>Gas sensors</topic><topic>Hydrogen sulfide</topic><topic>Iron</topic><topic>Molecular structure</topic><topic>Monolayers</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jia-Xing</creatorcontrib><creatorcontrib>Wu, Shao-Yi</creatorcontrib><creatorcontrib>Zhong, Si-Ying</creatorcontrib><creatorcontrib>Zhang, Gao-Jun</creatorcontrib><creatorcontrib>Yu, Xing-Yuan</creatorcontrib><creatorcontrib>Wu, Li-Na</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jia-Xing</au><au>Wu, Shao-Yi</au><au>Zhong, Si-Ying</au><au>Zhang, Gao-Jun</au><au>Yu, Xing-Yuan</au><au>Wu, Li-Na</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring promising gas sensing and highly active catalysts for CO oxidation: transition-metal (Fe, Co and Ni) adsorbed Janus MoSSe monolayers</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2021-05-12</date><risdate>2021</risdate><volume>23</volume><issue>18</issue><spage>114</spage><epage>1114</epage><pages>114-1114</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>From first-principles calculations, the transition-metal (TM) atom (Fe, Co and Ni) adsorbed Janus MoSSe monolayer, toxic gas molecules (CO, NH 3 and H 2 S) adsorbed on the Ni-MoSSe monolayer and CO catalytic oxidation on the Fe-MoSSe monolayer are systematically investigated. An increasing order (Fe-MoSSe &lt; Co-MoSSe &lt; Ni-MoSSe) is found for the stability and band gap of the TM atom adsorbed Janus MoSSe monolayer. These toxic gas molecules are found to be weakly physisorbed and strongly chemisorbed on the pristine and Ni-MoSSe monolayers, respectively. The electronic structure and gas molecular adsorption properties of the Janus MoSSe monolayer can be modulated by adsorbing different TM atoms and gas molecules. Particularly, the CO catalytic oxidation can be realized on the Fe-MoSSe monolayer in light of the more preferable Eley-Rideal (ER) mechanism with the two-step route (CO + O 2 → OOCO → CO 2 + O ads , CO + O ads → CO 2 ) with highly exothermic processes in each step. The adsorption of TM atoms which may greatly enhance gas sensing performance and catalytic performance of CO oxidation based on the Janus MoSSe monolayer is further discussed. From first-principles calculations, the transition-metal (TM) atom (Fe, Co and Ni) adsorbed Janus MoSSe monolayer, toxic gas molecules (CO, NH 3 and H 2 S) adsorbed on Ni-MoSSe monolayers and CO catalytic oxidation on Fe-MoSSe monolayers are systematically investigated.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33942039</pmid><doi>10.1039/d1cp00994j</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0947-8337</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2021-05, Vol.23 (18), p.114-1114
issn 1463-9076
1463-9084
language eng
recordid cdi_rsc_primary_d1cp00994j
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Adsorption
Ammonia
Carbon dioxide
Carbon monoxide
Catalytic oxidation
Cobalt
Electronic structure
First principles
Gas sensors
Hydrogen sulfide
Iron
Molecular structure
Monolayers
Nickel
Oxidation
Transition metals
title Exploring promising gas sensing and highly active catalysts for CO oxidation: transition-metal (Fe, Co and Ni) adsorbed Janus MoSSe monolayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20promising%20gas%20sensing%20and%20highly%20active%20catalysts%20for%20CO%20oxidation:%20transition-metal%20(Fe,%20Co%20and%20Ni)%20adsorbed%20Janus%20MoSSe%20monolayers&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Guo,%20Jia-Xing&rft.date=2021-05-12&rft.volume=23&rft.issue=18&rft.spage=114&rft.epage=1114&rft.pages=114-1114&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp00994j&rft_dat=%3Cproquest_rsc_p%3E2525655838%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525655838&rft_id=info:pmid/33942039&rfr_iscdi=true