Hydrogen bonding from crystalline water mediates the hydration/dehydration of mequitazine glycolate
The structural transition behaviors of the hydration and dehydration of mequitazine glycolate (MQZ-GLC) after exposure to heat and relative humidity have yet not been clarified, although our previous study demonstrated that mequitazine can be hydrated with glycolic acid. In this study, the hydration...
Gespeichert in:
Veröffentlicht in: | CrystEngComm 2021-07, Vol.23 (27), p.4816-4824 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4824 |
---|---|
container_issue | 27 |
container_start_page | 4816 |
container_title | CrystEngComm |
container_volume | 23 |
creator | Okura, Ryuhei Uchiyama, Hiromasa Kadota, Kazunori Tozuka, Yuichi |
description | The structural transition behaviors of the hydration and dehydration of mequitazine glycolate (MQZ-GLC) after exposure to heat and relative humidity have yet not been clarified, although our previous study demonstrated that mequitazine can be hydrated with glycolic acid. In this study, the hydration and dehydration behavior of MQZ-GLC were investigated using crystal structure analysis and water adsorption/desorption measurements. Dynamic vapor sorption measurements revealed that the MQZ-GLC anhydrate undergoes irreversible hydration above a certain humidity level. The crystal structure of the anhydrate was identified
via
structural analysis using
in situ
powder diffraction (PXRD) measurements and dispersion-corrected density functional theory (DFT-D) calculations. The structural characterization of the hydrate/anhydrate of MQZ-GLC showed that the formation of a hydrogen-bonding network by bridging crystalline water stabilized the hydrophilic layer of the hydrate more than that of the anhydrate. Furthermore, the geometry optimization of the dehydration model and the lattice energy calculations revealed that the conformational change during the dehydration process and the transition to the hydrate form in the solid phase are energetically induced.
Comparison of crystal structures, dynamic vapor adsorption measurements, lattice energy calculations and structural optimization of the dehydration model were used to evaluate the hydration-dehydration behavior. |
doi_str_mv | 10.1039/d1ce00543j |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1ce00543j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550220080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-497b719fb7e109394c9cfc0f13be614b4042f7afafb2cd49f55b482986e4b3b93</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWKsb90LAnTD25WNmmqXUapWCG10PSSZpp0wnbZIi4683tVJdvbs49z44CF0TuCfAxKgm2gDknK1O0IDwosjGwNjpv3yOLkJYARBOCAyQnvW1dwvTYeW6uukW2Hq3xtr3Icq2bTqDP2U0Hq9N3aQQcFwavEwlGRvXjWpzzNjZRG13TZRf-96i7bVrU-cSnVnZBnP1e4fo42n6Ppll87fnl8nDPNO0LGPGRalKIqwqDQHBBNdCWw2WMGUKwhUHTm0prbSK6poLm-eKj6kYF4YrpgQbotvD7sa77c6EWK3cznfpZUXzHCgFSAaG6O5Aae9C8MZWG9-spe8rAtVeYvVIJtMfia8JvjnAPugj9yeZfQOKr3Ay</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550220080</pqid></control><display><type>article</type><title>Hydrogen bonding from crystalline water mediates the hydration/dehydration of mequitazine glycolate</title><source>Alma/SFX Local Collection</source><source>Royal Society of Chemistry E-Journals</source><creator>Okura, Ryuhei ; Uchiyama, Hiromasa ; Kadota, Kazunori ; Tozuka, Yuichi</creator><creatorcontrib>Okura, Ryuhei ; Uchiyama, Hiromasa ; Kadota, Kazunori ; Tozuka, Yuichi</creatorcontrib><description>The structural transition behaviors of the hydration and dehydration of mequitazine glycolate (MQZ-GLC) after exposure to heat and relative humidity have yet not been clarified, although our previous study demonstrated that mequitazine can be hydrated with glycolic acid. In this study, the hydration and dehydration behavior of MQZ-GLC were investigated using crystal structure analysis and water adsorption/desorption measurements. Dynamic vapor sorption measurements revealed that the MQZ-GLC anhydrate undergoes irreversible hydration above a certain humidity level. The crystal structure of the anhydrate was identified
via
structural analysis using
in situ
powder diffraction (PXRD) measurements and dispersion-corrected density functional theory (DFT-D) calculations. The structural characterization of the hydrate/anhydrate of MQZ-GLC showed that the formation of a hydrogen-bonding network by bridging crystalline water stabilized the hydrophilic layer of the hydrate more than that of the anhydrate. Furthermore, the geometry optimization of the dehydration model and the lattice energy calculations revealed that the conformational change during the dehydration process and the transition to the hydrate form in the solid phase are energetically induced.
Comparison of crystal structures, dynamic vapor adsorption measurements, lattice energy calculations and structural optimization of the dehydration model were used to evaluate the hydration-dehydration behavior.</description><identifier>ISSN: 1466-8033</identifier><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/d1ce00543j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorbed water ; Crystal structure ; Crystallinity ; Crystallography ; Dehydration ; Density functional theory ; Glycolic acid ; Humidity ; Hydration ; Hydrogen bonding ; Optimization ; Relative humidity ; Solid phases ; Structural analysis</subject><ispartof>CrystEngComm, 2021-07, Vol.23 (27), p.4816-4824</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-497b719fb7e109394c9cfc0f13be614b4042f7afafb2cd49f55b482986e4b3b93</citedby><cites>FETCH-LOGICAL-c277t-497b719fb7e109394c9cfc0f13be614b4042f7afafb2cd49f55b482986e4b3b93</cites><orcidid>0000-0002-3370-6662 ; 0000-0002-6688-5652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Okura, Ryuhei</creatorcontrib><creatorcontrib>Uchiyama, Hiromasa</creatorcontrib><creatorcontrib>Kadota, Kazunori</creatorcontrib><creatorcontrib>Tozuka, Yuichi</creatorcontrib><title>Hydrogen bonding from crystalline water mediates the hydration/dehydration of mequitazine glycolate</title><title>CrystEngComm</title><description>The structural transition behaviors of the hydration and dehydration of mequitazine glycolate (MQZ-GLC) after exposure to heat and relative humidity have yet not been clarified, although our previous study demonstrated that mequitazine can be hydrated with glycolic acid. In this study, the hydration and dehydration behavior of MQZ-GLC were investigated using crystal structure analysis and water adsorption/desorption measurements. Dynamic vapor sorption measurements revealed that the MQZ-GLC anhydrate undergoes irreversible hydration above a certain humidity level. The crystal structure of the anhydrate was identified
via
structural analysis using
in situ
powder diffraction (PXRD) measurements and dispersion-corrected density functional theory (DFT-D) calculations. The structural characterization of the hydrate/anhydrate of MQZ-GLC showed that the formation of a hydrogen-bonding network by bridging crystalline water stabilized the hydrophilic layer of the hydrate more than that of the anhydrate. Furthermore, the geometry optimization of the dehydration model and the lattice energy calculations revealed that the conformational change during the dehydration process and the transition to the hydrate form in the solid phase are energetically induced.
Comparison of crystal structures, dynamic vapor adsorption measurements, lattice energy calculations and structural optimization of the dehydration model were used to evaluate the hydration-dehydration behavior.</description><subject>Adsorbed water</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallography</subject><subject>Dehydration</subject><subject>Density functional theory</subject><subject>Glycolic acid</subject><subject>Humidity</subject><subject>Hydration</subject><subject>Hydrogen bonding</subject><subject>Optimization</subject><subject>Relative humidity</subject><subject>Solid phases</subject><subject>Structural analysis</subject><issn>1466-8033</issn><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEURYMoWKsb90LAnTD25WNmmqXUapWCG10PSSZpp0wnbZIi4683tVJdvbs49z44CF0TuCfAxKgm2gDknK1O0IDwosjGwNjpv3yOLkJYARBOCAyQnvW1dwvTYeW6uukW2Hq3xtr3Icq2bTqDP2U0Hq9N3aQQcFwavEwlGRvXjWpzzNjZRG13TZRf-96i7bVrU-cSnVnZBnP1e4fo42n6Ppll87fnl8nDPNO0LGPGRalKIqwqDQHBBNdCWw2WMGUKwhUHTm0prbSK6poLm-eKj6kYF4YrpgQbotvD7sa77c6EWK3cznfpZUXzHCgFSAaG6O5Aae9C8MZWG9-spe8rAtVeYvVIJtMfia8JvjnAPugj9yeZfQOKr3Ay</recordid><startdate>20210712</startdate><enddate>20210712</enddate><creator>Okura, Ryuhei</creator><creator>Uchiyama, Hiromasa</creator><creator>Kadota, Kazunori</creator><creator>Tozuka, Yuichi</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3370-6662</orcidid><orcidid>https://orcid.org/0000-0002-6688-5652</orcidid></search><sort><creationdate>20210712</creationdate><title>Hydrogen bonding from crystalline water mediates the hydration/dehydration of mequitazine glycolate</title><author>Okura, Ryuhei ; Uchiyama, Hiromasa ; Kadota, Kazunori ; Tozuka, Yuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-497b719fb7e109394c9cfc0f13be614b4042f7afafb2cd49f55b482986e4b3b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorbed water</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallography</topic><topic>Dehydration</topic><topic>Density functional theory</topic><topic>Glycolic acid</topic><topic>Humidity</topic><topic>Hydration</topic><topic>Hydrogen bonding</topic><topic>Optimization</topic><topic>Relative humidity</topic><topic>Solid phases</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okura, Ryuhei</creatorcontrib><creatorcontrib>Uchiyama, Hiromasa</creatorcontrib><creatorcontrib>Kadota, Kazunori</creatorcontrib><creatorcontrib>Tozuka, Yuichi</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okura, Ryuhei</au><au>Uchiyama, Hiromasa</au><au>Kadota, Kazunori</au><au>Tozuka, Yuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen bonding from crystalline water mediates the hydration/dehydration of mequitazine glycolate</atitle><jtitle>CrystEngComm</jtitle><date>2021-07-12</date><risdate>2021</risdate><volume>23</volume><issue>27</issue><spage>4816</spage><epage>4824</epage><pages>4816-4824</pages><issn>1466-8033</issn><eissn>1466-8033</eissn><abstract>The structural transition behaviors of the hydration and dehydration of mequitazine glycolate (MQZ-GLC) after exposure to heat and relative humidity have yet not been clarified, although our previous study demonstrated that mequitazine can be hydrated with glycolic acid. In this study, the hydration and dehydration behavior of MQZ-GLC were investigated using crystal structure analysis and water adsorption/desorption measurements. Dynamic vapor sorption measurements revealed that the MQZ-GLC anhydrate undergoes irreversible hydration above a certain humidity level. The crystal structure of the anhydrate was identified
via
structural analysis using
in situ
powder diffraction (PXRD) measurements and dispersion-corrected density functional theory (DFT-D) calculations. The structural characterization of the hydrate/anhydrate of MQZ-GLC showed that the formation of a hydrogen-bonding network by bridging crystalline water stabilized the hydrophilic layer of the hydrate more than that of the anhydrate. Furthermore, the geometry optimization of the dehydration model and the lattice energy calculations revealed that the conformational change during the dehydration process and the transition to the hydrate form in the solid phase are energetically induced.
Comparison of crystal structures, dynamic vapor adsorption measurements, lattice energy calculations and structural optimization of the dehydration model were used to evaluate the hydration-dehydration behavior.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ce00543j</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3370-6662</orcidid><orcidid>https://orcid.org/0000-0002-6688-5652</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1466-8033 |
ispartof | CrystEngComm, 2021-07, Vol.23 (27), p.4816-4824 |
issn | 1466-8033 1466-8033 |
language | eng |
recordid | cdi_rsc_primary_d1ce00543j |
source | Alma/SFX Local Collection; Royal Society of Chemistry E-Journals |
subjects | Adsorbed water Crystal structure Crystallinity Crystallography Dehydration Density functional theory Glycolic acid Humidity Hydration Hydrogen bonding Optimization Relative humidity Solid phases Structural analysis |
title | Hydrogen bonding from crystalline water mediates the hydration/dehydration of mequitazine glycolate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20bonding%20from%20crystalline%20water%20mediates%20the%20hydration/dehydration%20of%20mequitazine%20glycolate&rft.jtitle=CrystEngComm&rft.au=Okura,%20Ryuhei&rft.date=2021-07-12&rft.volume=23&rft.issue=27&rft.spage=4816&rft.epage=4824&rft.pages=4816-4824&rft.issn=1466-8033&rft.eissn=1466-8033&rft_id=info:doi/10.1039/d1ce00543j&rft_dat=%3Cproquest_rsc_p%3E2550220080%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550220080&rft_id=info:pmid/&rfr_iscdi=true |