Hydrogen bonding from crystalline water mediates the hydration/dehydration of mequitazine glycolate

The structural transition behaviors of the hydration and dehydration of mequitazine glycolate (MQZ-GLC) after exposure to heat and relative humidity have yet not been clarified, although our previous study demonstrated that mequitazine can be hydrated with glycolic acid. In this study, the hydration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CrystEngComm 2021-07, Vol.23 (27), p.4816-4824
Hauptverfasser: Okura, Ryuhei, Uchiyama, Hiromasa, Kadota, Kazunori, Tozuka, Yuichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4824
container_issue 27
container_start_page 4816
container_title CrystEngComm
container_volume 23
creator Okura, Ryuhei
Uchiyama, Hiromasa
Kadota, Kazunori
Tozuka, Yuichi
description The structural transition behaviors of the hydration and dehydration of mequitazine glycolate (MQZ-GLC) after exposure to heat and relative humidity have yet not been clarified, although our previous study demonstrated that mequitazine can be hydrated with glycolic acid. In this study, the hydration and dehydration behavior of MQZ-GLC were investigated using crystal structure analysis and water adsorption/desorption measurements. Dynamic vapor sorption measurements revealed that the MQZ-GLC anhydrate undergoes irreversible hydration above a certain humidity level. The crystal structure of the anhydrate was identified via structural analysis using in situ powder diffraction (PXRD) measurements and dispersion-corrected density functional theory (DFT-D) calculations. The structural characterization of the hydrate/anhydrate of MQZ-GLC showed that the formation of a hydrogen-bonding network by bridging crystalline water stabilized the hydrophilic layer of the hydrate more than that of the anhydrate. Furthermore, the geometry optimization of the dehydration model and the lattice energy calculations revealed that the conformational change during the dehydration process and the transition to the hydrate form in the solid phase are energetically induced. Comparison of crystal structures, dynamic vapor adsorption measurements, lattice energy calculations and structural optimization of the dehydration model were used to evaluate the hydration-dehydration behavior.
doi_str_mv 10.1039/d1ce00543j
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1ce00543j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550220080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-497b719fb7e109394c9cfc0f13be614b4042f7afafb2cd49f55b482986e4b3b93</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWKsb90LAnTD25WNmmqXUapWCG10PSSZpp0wnbZIi4683tVJdvbs49z44CF0TuCfAxKgm2gDknK1O0IDwosjGwNjpv3yOLkJYARBOCAyQnvW1dwvTYeW6uukW2Hq3xtr3Icq2bTqDP2U0Hq9N3aQQcFwavEwlGRvXjWpzzNjZRG13TZRf-96i7bVrU-cSnVnZBnP1e4fo42n6Ppll87fnl8nDPNO0LGPGRalKIqwqDQHBBNdCWw2WMGUKwhUHTm0prbSK6poLm-eKj6kYF4YrpgQbotvD7sa77c6EWK3cznfpZUXzHCgFSAaG6O5Aae9C8MZWG9-spe8rAtVeYvVIJtMfia8JvjnAPugj9yeZfQOKr3Ay</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550220080</pqid></control><display><type>article</type><title>Hydrogen bonding from crystalline water mediates the hydration/dehydration of mequitazine glycolate</title><source>Alma/SFX Local Collection</source><source>Royal Society of Chemistry E-Journals</source><creator>Okura, Ryuhei ; Uchiyama, Hiromasa ; Kadota, Kazunori ; Tozuka, Yuichi</creator><creatorcontrib>Okura, Ryuhei ; Uchiyama, Hiromasa ; Kadota, Kazunori ; Tozuka, Yuichi</creatorcontrib><description>The structural transition behaviors of the hydration and dehydration of mequitazine glycolate (MQZ-GLC) after exposure to heat and relative humidity have yet not been clarified, although our previous study demonstrated that mequitazine can be hydrated with glycolic acid. In this study, the hydration and dehydration behavior of MQZ-GLC were investigated using crystal structure analysis and water adsorption/desorption measurements. Dynamic vapor sorption measurements revealed that the MQZ-GLC anhydrate undergoes irreversible hydration above a certain humidity level. The crystal structure of the anhydrate was identified via structural analysis using in situ powder diffraction (PXRD) measurements and dispersion-corrected density functional theory (DFT-D) calculations. The structural characterization of the hydrate/anhydrate of MQZ-GLC showed that the formation of a hydrogen-bonding network by bridging crystalline water stabilized the hydrophilic layer of the hydrate more than that of the anhydrate. Furthermore, the geometry optimization of the dehydration model and the lattice energy calculations revealed that the conformational change during the dehydration process and the transition to the hydrate form in the solid phase are energetically induced. Comparison of crystal structures, dynamic vapor adsorption measurements, lattice energy calculations and structural optimization of the dehydration model were used to evaluate the hydration-dehydration behavior.</description><identifier>ISSN: 1466-8033</identifier><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/d1ce00543j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorbed water ; Crystal structure ; Crystallinity ; Crystallography ; Dehydration ; Density functional theory ; Glycolic acid ; Humidity ; Hydration ; Hydrogen bonding ; Optimization ; Relative humidity ; Solid phases ; Structural analysis</subject><ispartof>CrystEngComm, 2021-07, Vol.23 (27), p.4816-4824</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-497b719fb7e109394c9cfc0f13be614b4042f7afafb2cd49f55b482986e4b3b93</citedby><cites>FETCH-LOGICAL-c277t-497b719fb7e109394c9cfc0f13be614b4042f7afafb2cd49f55b482986e4b3b93</cites><orcidid>0000-0002-3370-6662 ; 0000-0002-6688-5652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Okura, Ryuhei</creatorcontrib><creatorcontrib>Uchiyama, Hiromasa</creatorcontrib><creatorcontrib>Kadota, Kazunori</creatorcontrib><creatorcontrib>Tozuka, Yuichi</creatorcontrib><title>Hydrogen bonding from crystalline water mediates the hydration/dehydration of mequitazine glycolate</title><title>CrystEngComm</title><description>The structural transition behaviors of the hydration and dehydration of mequitazine glycolate (MQZ-GLC) after exposure to heat and relative humidity have yet not been clarified, although our previous study demonstrated that mequitazine can be hydrated with glycolic acid. In this study, the hydration and dehydration behavior of MQZ-GLC were investigated using crystal structure analysis and water adsorption/desorption measurements. Dynamic vapor sorption measurements revealed that the MQZ-GLC anhydrate undergoes irreversible hydration above a certain humidity level. The crystal structure of the anhydrate was identified via structural analysis using in situ powder diffraction (PXRD) measurements and dispersion-corrected density functional theory (DFT-D) calculations. The structural characterization of the hydrate/anhydrate of MQZ-GLC showed that the formation of a hydrogen-bonding network by bridging crystalline water stabilized the hydrophilic layer of the hydrate more than that of the anhydrate. Furthermore, the geometry optimization of the dehydration model and the lattice energy calculations revealed that the conformational change during the dehydration process and the transition to the hydrate form in the solid phase are energetically induced. Comparison of crystal structures, dynamic vapor adsorption measurements, lattice energy calculations and structural optimization of the dehydration model were used to evaluate the hydration-dehydration behavior.</description><subject>Adsorbed water</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallography</subject><subject>Dehydration</subject><subject>Density functional theory</subject><subject>Glycolic acid</subject><subject>Humidity</subject><subject>Hydration</subject><subject>Hydrogen bonding</subject><subject>Optimization</subject><subject>Relative humidity</subject><subject>Solid phases</subject><subject>Structural analysis</subject><issn>1466-8033</issn><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEURYMoWKsb90LAnTD25WNmmqXUapWCG10PSSZpp0wnbZIi4683tVJdvbs49z44CF0TuCfAxKgm2gDknK1O0IDwosjGwNjpv3yOLkJYARBOCAyQnvW1dwvTYeW6uukW2Hq3xtr3Icq2bTqDP2U0Hq9N3aQQcFwavEwlGRvXjWpzzNjZRG13TZRf-96i7bVrU-cSnVnZBnP1e4fo42n6Ppll87fnl8nDPNO0LGPGRalKIqwqDQHBBNdCWw2WMGUKwhUHTm0prbSK6poLm-eKj6kYF4YrpgQbotvD7sa77c6EWK3cznfpZUXzHCgFSAaG6O5Aae9C8MZWG9-spe8rAtVeYvVIJtMfia8JvjnAPugj9yeZfQOKr3Ay</recordid><startdate>20210712</startdate><enddate>20210712</enddate><creator>Okura, Ryuhei</creator><creator>Uchiyama, Hiromasa</creator><creator>Kadota, Kazunori</creator><creator>Tozuka, Yuichi</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3370-6662</orcidid><orcidid>https://orcid.org/0000-0002-6688-5652</orcidid></search><sort><creationdate>20210712</creationdate><title>Hydrogen bonding from crystalline water mediates the hydration/dehydration of mequitazine glycolate</title><author>Okura, Ryuhei ; Uchiyama, Hiromasa ; Kadota, Kazunori ; Tozuka, Yuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-497b719fb7e109394c9cfc0f13be614b4042f7afafb2cd49f55b482986e4b3b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorbed water</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallography</topic><topic>Dehydration</topic><topic>Density functional theory</topic><topic>Glycolic acid</topic><topic>Humidity</topic><topic>Hydration</topic><topic>Hydrogen bonding</topic><topic>Optimization</topic><topic>Relative humidity</topic><topic>Solid phases</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okura, Ryuhei</creatorcontrib><creatorcontrib>Uchiyama, Hiromasa</creatorcontrib><creatorcontrib>Kadota, Kazunori</creatorcontrib><creatorcontrib>Tozuka, Yuichi</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okura, Ryuhei</au><au>Uchiyama, Hiromasa</au><au>Kadota, Kazunori</au><au>Tozuka, Yuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen bonding from crystalline water mediates the hydration/dehydration of mequitazine glycolate</atitle><jtitle>CrystEngComm</jtitle><date>2021-07-12</date><risdate>2021</risdate><volume>23</volume><issue>27</issue><spage>4816</spage><epage>4824</epage><pages>4816-4824</pages><issn>1466-8033</issn><eissn>1466-8033</eissn><abstract>The structural transition behaviors of the hydration and dehydration of mequitazine glycolate (MQZ-GLC) after exposure to heat and relative humidity have yet not been clarified, although our previous study demonstrated that mequitazine can be hydrated with glycolic acid. In this study, the hydration and dehydration behavior of MQZ-GLC were investigated using crystal structure analysis and water adsorption/desorption measurements. Dynamic vapor sorption measurements revealed that the MQZ-GLC anhydrate undergoes irreversible hydration above a certain humidity level. The crystal structure of the anhydrate was identified via structural analysis using in situ powder diffraction (PXRD) measurements and dispersion-corrected density functional theory (DFT-D) calculations. The structural characterization of the hydrate/anhydrate of MQZ-GLC showed that the formation of a hydrogen-bonding network by bridging crystalline water stabilized the hydrophilic layer of the hydrate more than that of the anhydrate. Furthermore, the geometry optimization of the dehydration model and the lattice energy calculations revealed that the conformational change during the dehydration process and the transition to the hydrate form in the solid phase are energetically induced. Comparison of crystal structures, dynamic vapor adsorption measurements, lattice energy calculations and structural optimization of the dehydration model were used to evaluate the hydration-dehydration behavior.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ce00543j</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3370-6662</orcidid><orcidid>https://orcid.org/0000-0002-6688-5652</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1466-8033
ispartof CrystEngComm, 2021-07, Vol.23 (27), p.4816-4824
issn 1466-8033
1466-8033
language eng
recordid cdi_rsc_primary_d1ce00543j
source Alma/SFX Local Collection; Royal Society of Chemistry E-Journals
subjects Adsorbed water
Crystal structure
Crystallinity
Crystallography
Dehydration
Density functional theory
Glycolic acid
Humidity
Hydration
Hydrogen bonding
Optimization
Relative humidity
Solid phases
Structural analysis
title Hydrogen bonding from crystalline water mediates the hydration/dehydration of mequitazine glycolate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20bonding%20from%20crystalline%20water%20mediates%20the%20hydration/dehydration%20of%20mequitazine%20glycolate&rft.jtitle=CrystEngComm&rft.au=Okura,%20Ryuhei&rft.date=2021-07-12&rft.volume=23&rft.issue=27&rft.spage=4816&rft.epage=4824&rft.pages=4816-4824&rft.issn=1466-8033&rft.eissn=1466-8033&rft_id=info:doi/10.1039/d1ce00543j&rft_dat=%3Cproquest_rsc_p%3E2550220080%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550220080&rft_id=info:pmid/&rfr_iscdi=true