Elongation rate and average length of amyloid fibrils in solution using isotope-labelled small-angle neutron scattering

We demonstrate a solution method that allows both elongation rate and average fibril length of assembling amyloid fibrils to be estimated. The approach involves acquisition of real-time neutron scattering data during the initial stages of seeded growth, using contrast matched buffer to make the seed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC chemical biology 2021-08, Vol.2 (4), p.1232-1238
Hauptverfasser: Eves, Ben J, Doutch, James J, Terry, Ann E, Yin, Han, Moulin, Martine, Haertlein, Michael, Forsyth, V. Trevor, Flagmeier, Patrick, Knowles, Tuomas P. J, Dias, David M, Lotze, Gudrun, Seddon, Annela M, Squires, Adam M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1238
container_issue 4
container_start_page 1232
container_title RSC chemical biology
container_volume 2
creator Eves, Ben J
Doutch, James J
Terry, Ann E
Yin, Han
Moulin, Martine
Haertlein, Michael
Forsyth, V. Trevor
Flagmeier, Patrick
Knowles, Tuomas P. J
Dias, David M
Lotze, Gudrun
Seddon, Annela M
Squires, Adam M
description We demonstrate a solution method that allows both elongation rate and average fibril length of assembling amyloid fibrils to be estimated. The approach involves acquisition of real-time neutron scattering data during the initial stages of seeded growth, using contrast matched buffer to make the seeds effectively invisible to neutrons. As deuterated monomers add on to the seeds, the labelled growing ends give rise to scattering patterns that we model as cylinders whose increase in length with time gives an elongation rate. In addition, the absolute intensity of the signal can be used to determine the number of growing ends per unit volume, which in turn provides an estimate of seed length. The number of ends did not change significantly during elongation, demonstrating that any spontaneous or secondary nucleation was not significant compared with growth on the ends of pre-existing fibrils, and in addition providing a method of internal validation for the technique. Our experiments on initial growth of alpha synuclein fibrils using 1.2 mg ml −1 seeds in 2.5 mg ml −1 deuterated monomer at room temperature gave an elongation rate of 6.3 ± 0.5 Å min −1 , and an average seed length estimate of 4.2 ± 1.3 μm. We demonstrate a solution method that allows both elongation rate and average length of amyloid fibrils to be independently determined.
doi_str_mv 10.1039/d1cb00001b
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1cb00001b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566265648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-30a8d3fdb456b74c62c0ed10ce3707a43036f866c06f6b7a50bfd0f24181d1143</originalsourceid><addsrcrecordid>eNpVks9rFTEQgBdRbKm9eBdyFGE12WSzuxfBPusPeOBFz2E2mWwj2eSZZFv63zf2lWoHhhnIl28gk6Z5zeh7Rvn0wTA90xpsftacdpLzlsphev5ff9Kc5_y7Il3P2DQNL5sTLkQ_jlyeNjeXPoYFiouBJChIIBgC15hgQeIxLOWKREtgvfXRGWLdnJzPxAWSo9_ur23ZhYW4HEs8YOthRu_RkLyC9y2ExSMJuJVU0ayhFEyVf9W8sOAznj_Us-bXl8ufu2_t_sfX77tP-1YLIUvLKYyGWzOLXs6D0LLTFA2jGvlABxCccmlHKTWVtgLQ09kaajvBRmYYE_ys2R-9-QYP26wOya2QblUEp_x2qDnXVBmVhWmAYaQKRwQlDHAFyAY10E5wMNwAxar7eNRV14pGYygJ_BPr05PgrtQSr9XIBZv6oQrePghS_LNhLmp1WdcXg4Bxy6rrpexkL8VY0XdHVKeYc0L7OIZR9Xf36jPbXdzv_qLCb45wyvqR-_c3-B130qzO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566265648</pqid></control><display><type>article</type><title>Elongation rate and average length of amyloid fibrils in solution using isotope-labelled small-angle neutron scattering</title><source>PubMed (Medline)</source><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Eves, Ben J ; Doutch, James J ; Terry, Ann E ; Yin, Han ; Moulin, Martine ; Haertlein, Michael ; Forsyth, V. Trevor ; Flagmeier, Patrick ; Knowles, Tuomas P. J ; Dias, David M ; Lotze, Gudrun ; Seddon, Annela M ; Squires, Adam M</creator><creatorcontrib>Eves, Ben J ; Doutch, James J ; Terry, Ann E ; Yin, Han ; Moulin, Martine ; Haertlein, Michael ; Forsyth, V. Trevor ; Flagmeier, Patrick ; Knowles, Tuomas P. J ; Dias, David M ; Lotze, Gudrun ; Seddon, Annela M ; Squires, Adam M</creatorcontrib><description>We demonstrate a solution method that allows both elongation rate and average fibril length of assembling amyloid fibrils to be estimated. The approach involves acquisition of real-time neutron scattering data during the initial stages of seeded growth, using contrast matched buffer to make the seeds effectively invisible to neutrons. As deuterated monomers add on to the seeds, the labelled growing ends give rise to scattering patterns that we model as cylinders whose increase in length with time gives an elongation rate. In addition, the absolute intensity of the signal can be used to determine the number of growing ends per unit volume, which in turn provides an estimate of seed length. The number of ends did not change significantly during elongation, demonstrating that any spontaneous or secondary nucleation was not significant compared with growth on the ends of pre-existing fibrils, and in addition providing a method of internal validation for the technique. Our experiments on initial growth of alpha synuclein fibrils using 1.2 mg ml −1 seeds in 2.5 mg ml −1 deuterated monomer at room temperature gave an elongation rate of 6.3 ± 0.5 Å min −1 , and an average seed length estimate of 4.2 ± 1.3 μm. We demonstrate a solution method that allows both elongation rate and average length of amyloid fibrils to be independently determined.</description><identifier>ISSN: 2633-0679</identifier><identifier>EISSN: 2633-0679</identifier><identifier>DOI: 10.1039/d1cb00001b</identifier><identifier>PMID: 34458836</identifier><language>eng</language><publisher>RSC</publisher><subject>Biochemistry and Molecular Biology ; Biokemi och molekylärbiologi ; Biologi ; Biological Sciences ; Chemical Sciences ; Chemistry ; Fysikalisk kemi ; Kemi ; Natural Sciences ; Naturvetenskap ; Physical Chemistry</subject><ispartof>RSC chemical biology, 2021-08, Vol.2 (4), p.1232-1238</ispartof><rights>This journal is © The Royal Society of Chemistry 2021 RSC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-30a8d3fdb456b74c62c0ed10ce3707a43036f866c06f6b7a50bfd0f24181d1143</citedby><cites>FETCH-LOGICAL-c446t-30a8d3fdb456b74c62c0ed10ce3707a43036f866c06f6b7a50bfd0f24181d1143</cites><orcidid>0000-0003-0181-2847 ; 0000-0003-1396-467X ; 0000-0002-1204-5340 ; 0000-0002-0016-3008 ; 0000-0001-7995-2693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341957/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341957/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,553,728,781,785,865,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://lup.lub.lu.se/record/fa97a780-e8ea-4da3-ae17-70243ad3da0e$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Eves, Ben J</creatorcontrib><creatorcontrib>Doutch, James J</creatorcontrib><creatorcontrib>Terry, Ann E</creatorcontrib><creatorcontrib>Yin, Han</creatorcontrib><creatorcontrib>Moulin, Martine</creatorcontrib><creatorcontrib>Haertlein, Michael</creatorcontrib><creatorcontrib>Forsyth, V. Trevor</creatorcontrib><creatorcontrib>Flagmeier, Patrick</creatorcontrib><creatorcontrib>Knowles, Tuomas P. J</creatorcontrib><creatorcontrib>Dias, David M</creatorcontrib><creatorcontrib>Lotze, Gudrun</creatorcontrib><creatorcontrib>Seddon, Annela M</creatorcontrib><creatorcontrib>Squires, Adam M</creatorcontrib><title>Elongation rate and average length of amyloid fibrils in solution using isotope-labelled small-angle neutron scattering</title><title>RSC chemical biology</title><description>We demonstrate a solution method that allows both elongation rate and average fibril length of assembling amyloid fibrils to be estimated. The approach involves acquisition of real-time neutron scattering data during the initial stages of seeded growth, using contrast matched buffer to make the seeds effectively invisible to neutrons. As deuterated monomers add on to the seeds, the labelled growing ends give rise to scattering patterns that we model as cylinders whose increase in length with time gives an elongation rate. In addition, the absolute intensity of the signal can be used to determine the number of growing ends per unit volume, which in turn provides an estimate of seed length. The number of ends did not change significantly during elongation, demonstrating that any spontaneous or secondary nucleation was not significant compared with growth on the ends of pre-existing fibrils, and in addition providing a method of internal validation for the technique. Our experiments on initial growth of alpha synuclein fibrils using 1.2 mg ml −1 seeds in 2.5 mg ml −1 deuterated monomer at room temperature gave an elongation rate of 6.3 ± 0.5 Å min −1 , and an average seed length estimate of 4.2 ± 1.3 μm. We demonstrate a solution method that allows both elongation rate and average length of amyloid fibrils to be independently determined.</description><subject>Biochemistry and Molecular Biology</subject><subject>Biokemi och molekylärbiologi</subject><subject>Biologi</subject><subject>Biological Sciences</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Fysikalisk kemi</subject><subject>Kemi</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>Physical Chemistry</subject><issn>2633-0679</issn><issn>2633-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNpVks9rFTEQgBdRbKm9eBdyFGE12WSzuxfBPusPeOBFz2E2mWwj2eSZZFv63zf2lWoHhhnIl28gk6Z5zeh7Rvn0wTA90xpsftacdpLzlsphev5ff9Kc5_y7Il3P2DQNL5sTLkQ_jlyeNjeXPoYFiouBJChIIBgC15hgQeIxLOWKREtgvfXRGWLdnJzPxAWSo9_ur23ZhYW4HEs8YOthRu_RkLyC9y2ExSMJuJVU0ayhFEyVf9W8sOAznj_Us-bXl8ufu2_t_sfX77tP-1YLIUvLKYyGWzOLXs6D0LLTFA2jGvlABxCccmlHKTWVtgLQ09kaajvBRmYYE_ys2R-9-QYP26wOya2QblUEp_x2qDnXVBmVhWmAYaQKRwQlDHAFyAY10E5wMNwAxar7eNRV14pGYygJ_BPr05PgrtQSr9XIBZv6oQrePghS_LNhLmp1WdcXg4Bxy6rrpexkL8VY0XdHVKeYc0L7OIZR9Xf36jPbXdzv_qLCb45wyvqR-_c3-B130qzO</recordid><startdate>20210805</startdate><enddate>20210805</enddate><creator>Eves, Ben J</creator><creator>Doutch, James J</creator><creator>Terry, Ann E</creator><creator>Yin, Han</creator><creator>Moulin, Martine</creator><creator>Haertlein, Michael</creator><creator>Forsyth, V. Trevor</creator><creator>Flagmeier, Patrick</creator><creator>Knowles, Tuomas P. J</creator><creator>Dias, David M</creator><creator>Lotze, Gudrun</creator><creator>Seddon, Annela M</creator><creator>Squires, Adam M</creator><general>RSC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-0181-2847</orcidid><orcidid>https://orcid.org/0000-0003-1396-467X</orcidid><orcidid>https://orcid.org/0000-0002-1204-5340</orcidid><orcidid>https://orcid.org/0000-0002-0016-3008</orcidid><orcidid>https://orcid.org/0000-0001-7995-2693</orcidid></search><sort><creationdate>20210805</creationdate><title>Elongation rate and average length of amyloid fibrils in solution using isotope-labelled small-angle neutron scattering</title><author>Eves, Ben J ; Doutch, James J ; Terry, Ann E ; Yin, Han ; Moulin, Martine ; Haertlein, Michael ; Forsyth, V. Trevor ; Flagmeier, Patrick ; Knowles, Tuomas P. J ; Dias, David M ; Lotze, Gudrun ; Seddon, Annela M ; Squires, Adam M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-30a8d3fdb456b74c62c0ed10ce3707a43036f866c06f6b7a50bfd0f24181d1143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry and Molecular Biology</topic><topic>Biokemi och molekylärbiologi</topic><topic>Biologi</topic><topic>Biological Sciences</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Fysikalisk kemi</topic><topic>Kemi</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>Physical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eves, Ben J</creatorcontrib><creatorcontrib>Doutch, James J</creatorcontrib><creatorcontrib>Terry, Ann E</creatorcontrib><creatorcontrib>Yin, Han</creatorcontrib><creatorcontrib>Moulin, Martine</creatorcontrib><creatorcontrib>Haertlein, Michael</creatorcontrib><creatorcontrib>Forsyth, V. Trevor</creatorcontrib><creatorcontrib>Flagmeier, Patrick</creatorcontrib><creatorcontrib>Knowles, Tuomas P. J</creatorcontrib><creatorcontrib>Dias, David M</creatorcontrib><creatorcontrib>Lotze, Gudrun</creatorcontrib><creatorcontrib>Seddon, Annela M</creatorcontrib><creatorcontrib>Squires, Adam M</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><jtitle>RSC chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eves, Ben J</au><au>Doutch, James J</au><au>Terry, Ann E</au><au>Yin, Han</au><au>Moulin, Martine</au><au>Haertlein, Michael</au><au>Forsyth, V. Trevor</au><au>Flagmeier, Patrick</au><au>Knowles, Tuomas P. J</au><au>Dias, David M</au><au>Lotze, Gudrun</au><au>Seddon, Annela M</au><au>Squires, Adam M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elongation rate and average length of amyloid fibrils in solution using isotope-labelled small-angle neutron scattering</atitle><jtitle>RSC chemical biology</jtitle><date>2021-08-05</date><risdate>2021</risdate><volume>2</volume><issue>4</issue><spage>1232</spage><epage>1238</epage><pages>1232-1238</pages><issn>2633-0679</issn><eissn>2633-0679</eissn><abstract>We demonstrate a solution method that allows both elongation rate and average fibril length of assembling amyloid fibrils to be estimated. The approach involves acquisition of real-time neutron scattering data during the initial stages of seeded growth, using contrast matched buffer to make the seeds effectively invisible to neutrons. As deuterated monomers add on to the seeds, the labelled growing ends give rise to scattering patterns that we model as cylinders whose increase in length with time gives an elongation rate. In addition, the absolute intensity of the signal can be used to determine the number of growing ends per unit volume, which in turn provides an estimate of seed length. The number of ends did not change significantly during elongation, demonstrating that any spontaneous or secondary nucleation was not significant compared with growth on the ends of pre-existing fibrils, and in addition providing a method of internal validation for the technique. Our experiments on initial growth of alpha synuclein fibrils using 1.2 mg ml −1 seeds in 2.5 mg ml −1 deuterated monomer at room temperature gave an elongation rate of 6.3 ± 0.5 Å min −1 , and an average seed length estimate of 4.2 ± 1.3 μm. We demonstrate a solution method that allows both elongation rate and average length of amyloid fibrils to be independently determined.</abstract><pub>RSC</pub><pmid>34458836</pmid><doi>10.1039/d1cb00001b</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0181-2847</orcidid><orcidid>https://orcid.org/0000-0003-1396-467X</orcidid><orcidid>https://orcid.org/0000-0002-1204-5340</orcidid><orcidid>https://orcid.org/0000-0002-0016-3008</orcidid><orcidid>https://orcid.org/0000-0001-7995-2693</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2633-0679
ispartof RSC chemical biology, 2021-08, Vol.2 (4), p.1232-1238
issn 2633-0679
2633-0679
language eng
recordid cdi_rsc_primary_d1cb00001b
source PubMed (Medline); DOAJ Directory of Open Access Journals; SWEPUB Freely available online; EZB Electronic Journals Library; PubMed Central Open Access
subjects Biochemistry and Molecular Biology
Biokemi och molekylärbiologi
Biologi
Biological Sciences
Chemical Sciences
Chemistry
Fysikalisk kemi
Kemi
Natural Sciences
Naturvetenskap
Physical Chemistry
title Elongation rate and average length of amyloid fibrils in solution using isotope-labelled small-angle neutron scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T15%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elongation%20rate%20and%20average%20length%20of%20amyloid%20fibrils%20in%20solution%20using%20isotope-labelled%20small-angle%20neutron%20scattering&rft.jtitle=RSC%20chemical%20biology&rft.au=Eves,%20Ben%20J&rft.date=2021-08-05&rft.volume=2&rft.issue=4&rft.spage=1232&rft.epage=1238&rft.pages=1232-1238&rft.issn=2633-0679&rft.eissn=2633-0679&rft_id=info:doi/10.1039/d1cb00001b&rft_dat=%3Cproquest_rsc_p%3E2566265648%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566265648&rft_id=info:pmid/34458836&rfr_iscdi=true