Mechanically robust hybrid hydrogels of photo-crosslinkable gelatin and laminin-mimetic peptide amphiphiles for neural induction

Self-assembling bio-instructive materials that can provide a biomimetic tissue microenvironment with the capability to regulate cellular behaviors represent an attractive platform in regenerative medicine. Herein, we develop a hybrid neuro-instructive hydrogel that combines the properties of a photo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials science 2021-12, Vol.9 (24), p.827-8284
Hauptverfasser: Isik, Melis, Eylem, Cemil Can, Haciefendioglu, Tugba, Yildirim, Erol, Sari, Buse, Nemutlu, Emirhan, Emregul, Emel, Okesola, Babatunde O, Derkus, Burak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8284
container_issue 24
container_start_page 827
container_title Biomaterials science
container_volume 9
creator Isik, Melis
Eylem, Cemil Can
Haciefendioglu, Tugba
Yildirim, Erol
Sari, Buse
Nemutlu, Emirhan
Emregul, Emel
Okesola, Babatunde O
Derkus, Burak
description Self-assembling bio-instructive materials that can provide a biomimetic tissue microenvironment with the capability to regulate cellular behaviors represent an attractive platform in regenerative medicine. Herein, we develop a hybrid neuro-instructive hydrogel that combines the properties of a photo-crosslinkable gelatin methacrylate (GelMA) and self-assembling peptide amphiphiles (PAs) bearing a laminin-derived neuro-inductive epitope (PA-GSR). Electrostatic interaction and ultraviolet light crosslinking mechanisms were combined to create dual-crosslinked hybrid hydrogels with tunable stiffness. Spectroscopic, microscopic and theoretical techniques show that the cationic PA-GSR(+) electrostatically co-assembles with the negatively charged GelMA to create weak hydrogels with hierarchically ordered microstructures, which were further photo-crosslinked to create mechanically robust hydrogels. Dynamic oscillatory rheology and micromechanical testing show that photo-crosslinking of the co-assembled GelMA and PA-GSR(+) hydrogel results in robust hydrogels displaying improved stiffness. Gene expression analysis was used to show that GelMA/ PA-GSR(+) hydrogels can induce human mesenchymal stem cells (hMSCs) into neural-lineage cells and supports neural-lineage specification of neuroblast-like cells (SH-SY5Y) in a growth-factor-free manner. Also, metabolomics analysis suggests that the hydrogel alters the metabolite profiles in the cells by affecting multiple molecular pathways. This work highlights a new approach for the design of PA-based hybrid hydrogels with robust mechanical properties and biological functionalities for nerve tissue regeneration. A supramolecular hydrogel providing a biomimetic neural microenvironment with improved mechanical properties presents a laminin-derived neuro-inductive peptide epitope that induces multipotent stem cells into neural-lineage cells.
doi_str_mv 10.1039/d1bm01350e
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1bm01350e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597483527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-9cd6250967ba4ebacbe97bf9c22ec25845f7fbd644cabbeb96898f190945a91a3</originalsourceid><addsrcrecordid>eNpdkc1rFTEUxYMottRu3FsCbqQwmmQyyWRZ-6XQ4kbXQz7u-NJmkmkys3g7_3TTvvYJXi6cC_fH4XIPQu8p-UxJq744aiZC247AK3TICJcN77l6vZ9bcoCOS7kjtaRURNC36KDlUghBukP05xbsRkdvdQhbnJNZy4I3W5O9q-Jy-g2h4DTieZOW1NicSgk-3msTANedXnzEOjoc9OSjj83kJ1i8xTPMi3eA9TRvfO0ABY8p4whr1gH76Fa7-BTfoTejDgWOn_UI_bq6_Hn-rbn5cf39_Oymsa3sl0ZZJ1hHlJBGczDaGlDSjMoyBpZ1Pe9GORonOLfaGDBK9KofqSKKd1pR3R6hTzvfOaeHFcoyTL5YCEFHSGsZWKdk_VbHZEU__ofepTXHet3ABJGtVIyLSp3uqKefZBiHOftJ5-1AyfAYzXBBv94-RXNZ4ZNny9VM4PboSxAV-LADcrH77b9s27_rBZXN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607379246</pqid></control><display><type>article</type><title>Mechanically robust hybrid hydrogels of photo-crosslinkable gelatin and laminin-mimetic peptide amphiphiles for neural induction</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Isik, Melis ; Eylem, Cemil Can ; Haciefendioglu, Tugba ; Yildirim, Erol ; Sari, Buse ; Nemutlu, Emirhan ; Emregul, Emel ; Okesola, Babatunde O ; Derkus, Burak</creator><creatorcontrib>Isik, Melis ; Eylem, Cemil Can ; Haciefendioglu, Tugba ; Yildirim, Erol ; Sari, Buse ; Nemutlu, Emirhan ; Emregul, Emel ; Okesola, Babatunde O ; Derkus, Burak</creatorcontrib><description>Self-assembling bio-instructive materials that can provide a biomimetic tissue microenvironment with the capability to regulate cellular behaviors represent an attractive platform in regenerative medicine. Herein, we develop a hybrid neuro-instructive hydrogel that combines the properties of a photo-crosslinkable gelatin methacrylate (GelMA) and self-assembling peptide amphiphiles (PAs) bearing a laminin-derived neuro-inductive epitope (PA-GSR). Electrostatic interaction and ultraviolet light crosslinking mechanisms were combined to create dual-crosslinked hybrid hydrogels with tunable stiffness. Spectroscopic, microscopic and theoretical techniques show that the cationic PA-GSR(+) electrostatically co-assembles with the negatively charged GelMA to create weak hydrogels with hierarchically ordered microstructures, which were further photo-crosslinked to create mechanically robust hydrogels. Dynamic oscillatory rheology and micromechanical testing show that photo-crosslinking of the co-assembled GelMA and PA-GSR(+) hydrogel results in robust hydrogels displaying improved stiffness. Gene expression analysis was used to show that GelMA/ PA-GSR(+) hydrogels can induce human mesenchymal stem cells (hMSCs) into neural-lineage cells and supports neural-lineage specification of neuroblast-like cells (SH-SY5Y) in a growth-factor-free manner. Also, metabolomics analysis suggests that the hydrogel alters the metabolite profiles in the cells by affecting multiple molecular pathways. This work highlights a new approach for the design of PA-based hybrid hydrogels with robust mechanical properties and biological functionalities for nerve tissue regeneration. A supramolecular hydrogel providing a biomimetic neural microenvironment with improved mechanical properties presents a laminin-derived neuro-inductive peptide epitope that induces multipotent stem cells into neural-lineage cells.</description><identifier>ISSN: 2047-4830</identifier><identifier>EISSN: 2047-4849</identifier><identifier>DOI: 10.1039/d1bm01350e</identifier><identifier>PMID: 34766605</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biological properties ; Biomimetic materials ; Biomimetics ; Crosslinking ; Gelatin ; Gene expression ; Humans ; Hydrogels ; Laminin ; Mechanical properties ; Metabolites ; Peptides ; Regeneration (physiology) ; Rheological properties ; Rheology ; Robustness ; Self-assembly ; Stem cells ; Stiffness ; Tissue Engineering ; Ultraviolet radiation</subject><ispartof>Biomaterials science, 2021-12, Vol.9 (24), p.827-8284</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-9cd6250967ba4ebacbe97bf9c22ec25845f7fbd644cabbeb96898f190945a91a3</citedby><cites>FETCH-LOGICAL-c378t-9cd6250967ba4ebacbe97bf9c22ec25845f7fbd644cabbeb96898f190945a91a3</cites><orcidid>0000-0003-0392-9205 ; 0000-0001-5558-0995 ; 0000-0003-1101-7548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34766605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Isik, Melis</creatorcontrib><creatorcontrib>Eylem, Cemil Can</creatorcontrib><creatorcontrib>Haciefendioglu, Tugba</creatorcontrib><creatorcontrib>Yildirim, Erol</creatorcontrib><creatorcontrib>Sari, Buse</creatorcontrib><creatorcontrib>Nemutlu, Emirhan</creatorcontrib><creatorcontrib>Emregul, Emel</creatorcontrib><creatorcontrib>Okesola, Babatunde O</creatorcontrib><creatorcontrib>Derkus, Burak</creatorcontrib><title>Mechanically robust hybrid hydrogels of photo-crosslinkable gelatin and laminin-mimetic peptide amphiphiles for neural induction</title><title>Biomaterials science</title><addtitle>Biomater Sci</addtitle><description>Self-assembling bio-instructive materials that can provide a biomimetic tissue microenvironment with the capability to regulate cellular behaviors represent an attractive platform in regenerative medicine. Herein, we develop a hybrid neuro-instructive hydrogel that combines the properties of a photo-crosslinkable gelatin methacrylate (GelMA) and self-assembling peptide amphiphiles (PAs) bearing a laminin-derived neuro-inductive epitope (PA-GSR). Electrostatic interaction and ultraviolet light crosslinking mechanisms were combined to create dual-crosslinked hybrid hydrogels with tunable stiffness. Spectroscopic, microscopic and theoretical techniques show that the cationic PA-GSR(+) electrostatically co-assembles with the negatively charged GelMA to create weak hydrogels with hierarchically ordered microstructures, which were further photo-crosslinked to create mechanically robust hydrogels. Dynamic oscillatory rheology and micromechanical testing show that photo-crosslinking of the co-assembled GelMA and PA-GSR(+) hydrogel results in robust hydrogels displaying improved stiffness. Gene expression analysis was used to show that GelMA/ PA-GSR(+) hydrogels can induce human mesenchymal stem cells (hMSCs) into neural-lineage cells and supports neural-lineage specification of neuroblast-like cells (SH-SY5Y) in a growth-factor-free manner. Also, metabolomics analysis suggests that the hydrogel alters the metabolite profiles in the cells by affecting multiple molecular pathways. This work highlights a new approach for the design of PA-based hybrid hydrogels with robust mechanical properties and biological functionalities for nerve tissue regeneration. A supramolecular hydrogel providing a biomimetic neural microenvironment with improved mechanical properties presents a laminin-derived neuro-inductive peptide epitope that induces multipotent stem cells into neural-lineage cells.</description><subject>Biological properties</subject><subject>Biomimetic materials</subject><subject>Biomimetics</subject><subject>Crosslinking</subject><subject>Gelatin</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Laminin</subject><subject>Mechanical properties</subject><subject>Metabolites</subject><subject>Peptides</subject><subject>Regeneration (physiology)</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Robustness</subject><subject>Self-assembly</subject><subject>Stem cells</subject><subject>Stiffness</subject><subject>Tissue Engineering</subject><subject>Ultraviolet radiation</subject><issn>2047-4830</issn><issn>2047-4849</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1rFTEUxYMottRu3FsCbqQwmmQyyWRZ-6XQ4kbXQz7u-NJmkmkys3g7_3TTvvYJXi6cC_fH4XIPQu8p-UxJq744aiZC247AK3TICJcN77l6vZ9bcoCOS7kjtaRURNC36KDlUghBukP05xbsRkdvdQhbnJNZy4I3W5O9q-Jy-g2h4DTieZOW1NicSgk-3msTANedXnzEOjoc9OSjj83kJ1i8xTPMi3eA9TRvfO0ABY8p4whr1gH76Fa7-BTfoTejDgWOn_UI_bq6_Hn-rbn5cf39_Oymsa3sl0ZZJ1hHlJBGczDaGlDSjMoyBpZ1Pe9GORonOLfaGDBK9KofqSKKd1pR3R6hTzvfOaeHFcoyTL5YCEFHSGsZWKdk_VbHZEU__ofepTXHet3ABJGtVIyLSp3uqKefZBiHOftJ5-1AyfAYzXBBv94-RXNZ4ZNny9VM4PboSxAV-LADcrH77b9s27_rBZXN</recordid><startdate>20211207</startdate><enddate>20211207</enddate><creator>Isik, Melis</creator><creator>Eylem, Cemil Can</creator><creator>Haciefendioglu, Tugba</creator><creator>Yildirim, Erol</creator><creator>Sari, Buse</creator><creator>Nemutlu, Emirhan</creator><creator>Emregul, Emel</creator><creator>Okesola, Babatunde O</creator><creator>Derkus, Burak</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0392-9205</orcidid><orcidid>https://orcid.org/0000-0001-5558-0995</orcidid><orcidid>https://orcid.org/0000-0003-1101-7548</orcidid></search><sort><creationdate>20211207</creationdate><title>Mechanically robust hybrid hydrogels of photo-crosslinkable gelatin and laminin-mimetic peptide amphiphiles for neural induction</title><author>Isik, Melis ; Eylem, Cemil Can ; Haciefendioglu, Tugba ; Yildirim, Erol ; Sari, Buse ; Nemutlu, Emirhan ; Emregul, Emel ; Okesola, Babatunde O ; Derkus, Burak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-9cd6250967ba4ebacbe97bf9c22ec25845f7fbd644cabbeb96898f190945a91a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological properties</topic><topic>Biomimetic materials</topic><topic>Biomimetics</topic><topic>Crosslinking</topic><topic>Gelatin</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Laminin</topic><topic>Mechanical properties</topic><topic>Metabolites</topic><topic>Peptides</topic><topic>Regeneration (physiology)</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Robustness</topic><topic>Self-assembly</topic><topic>Stem cells</topic><topic>Stiffness</topic><topic>Tissue Engineering</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isik, Melis</creatorcontrib><creatorcontrib>Eylem, Cemil Can</creatorcontrib><creatorcontrib>Haciefendioglu, Tugba</creatorcontrib><creatorcontrib>Yildirim, Erol</creatorcontrib><creatorcontrib>Sari, Buse</creatorcontrib><creatorcontrib>Nemutlu, Emirhan</creatorcontrib><creatorcontrib>Emregul, Emel</creatorcontrib><creatorcontrib>Okesola, Babatunde O</creatorcontrib><creatorcontrib>Derkus, Burak</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isik, Melis</au><au>Eylem, Cemil Can</au><au>Haciefendioglu, Tugba</au><au>Yildirim, Erol</au><au>Sari, Buse</au><au>Nemutlu, Emirhan</au><au>Emregul, Emel</au><au>Okesola, Babatunde O</au><au>Derkus, Burak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanically robust hybrid hydrogels of photo-crosslinkable gelatin and laminin-mimetic peptide amphiphiles for neural induction</atitle><jtitle>Biomaterials science</jtitle><addtitle>Biomater Sci</addtitle><date>2021-12-07</date><risdate>2021</risdate><volume>9</volume><issue>24</issue><spage>827</spage><epage>8284</epage><pages>827-8284</pages><issn>2047-4830</issn><eissn>2047-4849</eissn><abstract>Self-assembling bio-instructive materials that can provide a biomimetic tissue microenvironment with the capability to regulate cellular behaviors represent an attractive platform in regenerative medicine. Herein, we develop a hybrid neuro-instructive hydrogel that combines the properties of a photo-crosslinkable gelatin methacrylate (GelMA) and self-assembling peptide amphiphiles (PAs) bearing a laminin-derived neuro-inductive epitope (PA-GSR). Electrostatic interaction and ultraviolet light crosslinking mechanisms were combined to create dual-crosslinked hybrid hydrogels with tunable stiffness. Spectroscopic, microscopic and theoretical techniques show that the cationic PA-GSR(+) electrostatically co-assembles with the negatively charged GelMA to create weak hydrogels with hierarchically ordered microstructures, which were further photo-crosslinked to create mechanically robust hydrogels. Dynamic oscillatory rheology and micromechanical testing show that photo-crosslinking of the co-assembled GelMA and PA-GSR(+) hydrogel results in robust hydrogels displaying improved stiffness. Gene expression analysis was used to show that GelMA/ PA-GSR(+) hydrogels can induce human mesenchymal stem cells (hMSCs) into neural-lineage cells and supports neural-lineage specification of neuroblast-like cells (SH-SY5Y) in a growth-factor-free manner. Also, metabolomics analysis suggests that the hydrogel alters the metabolite profiles in the cells by affecting multiple molecular pathways. This work highlights a new approach for the design of PA-based hybrid hydrogels with robust mechanical properties and biological functionalities for nerve tissue regeneration. A supramolecular hydrogel providing a biomimetic neural microenvironment with improved mechanical properties presents a laminin-derived neuro-inductive peptide epitope that induces multipotent stem cells into neural-lineage cells.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34766605</pmid><doi>10.1039/d1bm01350e</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0392-9205</orcidid><orcidid>https://orcid.org/0000-0001-5558-0995</orcidid><orcidid>https://orcid.org/0000-0003-1101-7548</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2047-4830
ispartof Biomaterials science, 2021-12, Vol.9 (24), p.827-8284
issn 2047-4830
2047-4849
language eng
recordid cdi_rsc_primary_d1bm01350e
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Biological properties
Biomimetic materials
Biomimetics
Crosslinking
Gelatin
Gene expression
Humans
Hydrogels
Laminin
Mechanical properties
Metabolites
Peptides
Regeneration (physiology)
Rheological properties
Rheology
Robustness
Self-assembly
Stem cells
Stiffness
Tissue Engineering
Ultraviolet radiation
title Mechanically robust hybrid hydrogels of photo-crosslinkable gelatin and laminin-mimetic peptide amphiphiles for neural induction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanically%20robust%20hybrid%20hydrogels%20of%20photo-crosslinkable%20gelatin%20and%20laminin-mimetic%20peptide%20amphiphiles%20for%20neural%20induction&rft.jtitle=Biomaterials%20science&rft.au=Isik,%20Melis&rft.date=2021-12-07&rft.volume=9&rft.issue=24&rft.spage=827&rft.epage=8284&rft.pages=827-8284&rft.issn=2047-4830&rft.eissn=2047-4849&rft_id=info:doi/10.1039/d1bm01350e&rft_dat=%3Cproquest_rsc_p%3E2597483527%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607379246&rft_id=info:pmid/34766605&rfr_iscdi=true