A new generation of hollow polymeric microfibers produced by gas dissolution foaming

A new and straightforward route to produce polymeric hollow microfibers has been proposed. Polycaprolactone (PCL) hollow fibers are obtained for the first time using an environmentally friendly gas dissolution foaming approach, overcoming its limitations to induce porosity on samples in the micromet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2020-10, Vol.8 (38), p.882-8829
Hauptverfasser: Barroso-Solares, Suset, Cuadra-Rodriguez, Daniel, Rodriguez-Mendez, Maria Luz, Rodriguez-Perez, Miguel Angel, Pinto, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8829
container_issue 38
container_start_page 882
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 8
creator Barroso-Solares, Suset
Cuadra-Rodriguez, Daniel
Rodriguez-Mendez, Maria Luz
Rodriguez-Perez, Miguel Angel
Pinto, Javier
description A new and straightforward route to produce polymeric hollow microfibers has been proposed. Polycaprolactone (PCL) hollow fibers are obtained for the first time using an environmentally friendly gas dissolution foaming approach, overcoming its limitations to induce porosity on samples in the micrometric range. Different porous morphologies are achieved from solid PCL microfibers with a well-controlled diameter obtained by conventional electrospinning. The optimization of the foaming parameters provides two sets of well-defined hollow fibers, one showing smooth surfaces and the other presenting an enhanced surface porosity. Accordingly, gas dissolution foaming proves to be not only suitable for the production of hollow polymeric microfibers, but is also capable of providing diverse porous morphologies from the same precursor, solid fibers. Moreover, a preliminary study about the suitability of this new generation of foamed hollow polymeric fibers for drug delivery is carried out, aiming to take advantage of the enhanced surface area and tunable morphology obtained by using the proposed new production method. It is found that the foamed microfibers can be loaded with up to 15 wt% of ibuprofen while preserving the morphology of each kind of fiber. Then, foamed PCL fibers presenting a hollow structure and surface porosity show a remarkable constant release of ibuprofen for almost one and a half days. In contrast, the original solid fibers do not present such behavior, releasing all the ibuprofen in about seven hours. A new and straightforward route to produce polymeric hollow microfibers has been proposed, for the first time, using a gas dissolution foaming approach.
doi_str_mv 10.1039/d0tb01560a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0tb01560a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448842596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-1a27498a60d41077cd11e8aa5c613ffad287f8755e4fbcbe6c18dfc5b6cc5a03</originalsourceid><addsrcrecordid>eNp9kTtPwzAUhS0EolXpwg4yYkMK2HHsOGNbnlIllgxskeNHSZXEwU5U9d9j2lI2vFxL5_O59x4DcInRPUYke1CoLxGmDIkTMI4RRVFKMT893tHHCEy9X6NwOGacJOdgRAiKGcnIGOQz2OoNXOlWO9FXtoXWwE9b13YDO1tvG-0qCZtKOmuqUjsPO2fVILWC5RauhIeq8t7Ww-6tsaKp2tUFODOi9np6qBOQPz_li9do-f7ytpgtI0myrI-wiNMk44IhlWCUplJhrLkQVDJMjBEq5qnhKaU6MaUsNZOYKyNpyaSkApEJuN3bhpG-Bu37Ym0H14aORZwknCcxzVig7vZUWMF7p03RuaoRbltgVPxEWDyifL6LcBbg64PlUDZaHdHfwAJwtQecl0f17w-CfvOfXnTKkG-xboHV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448842596</pqid></control><display><type>article</type><title>A new generation of hollow polymeric microfibers produced by gas dissolution foaming</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Barroso-Solares, Suset ; Cuadra-Rodriguez, Daniel ; Rodriguez-Mendez, Maria Luz ; Rodriguez-Perez, Miguel Angel ; Pinto, Javier</creator><creatorcontrib>Barroso-Solares, Suset ; Cuadra-Rodriguez, Daniel ; Rodriguez-Mendez, Maria Luz ; Rodriguez-Perez, Miguel Angel ; Pinto, Javier</creatorcontrib><description>A new and straightforward route to produce polymeric hollow microfibers has been proposed. Polycaprolactone (PCL) hollow fibers are obtained for the first time using an environmentally friendly gas dissolution foaming approach, overcoming its limitations to induce porosity on samples in the micrometric range. Different porous morphologies are achieved from solid PCL microfibers with a well-controlled diameter obtained by conventional electrospinning. The optimization of the foaming parameters provides two sets of well-defined hollow fibers, one showing smooth surfaces and the other presenting an enhanced surface porosity. Accordingly, gas dissolution foaming proves to be not only suitable for the production of hollow polymeric microfibers, but is also capable of providing diverse porous morphologies from the same precursor, solid fibers. Moreover, a preliminary study about the suitability of this new generation of foamed hollow polymeric fibers for drug delivery is carried out, aiming to take advantage of the enhanced surface area and tunable morphology obtained by using the proposed new production method. It is found that the foamed microfibers can be loaded with up to 15 wt% of ibuprofen while preserving the morphology of each kind of fiber. Then, foamed PCL fibers presenting a hollow structure and surface porosity show a remarkable constant release of ibuprofen for almost one and a half days. In contrast, the original solid fibers do not present such behavior, releasing all the ibuprofen in about seven hours. A new and straightforward route to produce polymeric hollow microfibers has been proposed, for the first time, using a gas dissolution foaming approach.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d0tb01560a</identifier><identifier>PMID: 33026393</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Dissolution ; Drug delivery ; Drug Delivery Systems ; Drug Liberation ; Fibers ; Foaming ; Ibuprofen ; Ibuprofen - chemistry ; Manufactured Materials ; Microfibers ; Morphology ; Nonsteroidal anti-inflammatory drugs ; Optimization ; Plastic foam ; Polycaprolactone ; Polyesters - chemistry ; Porosity ; Production methods</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2020-10, Vol.8 (38), p.882-8829</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-1a27498a60d41077cd11e8aa5c613ffad287f8755e4fbcbe6c18dfc5b6cc5a03</citedby><cites>FETCH-LOGICAL-c399t-1a27498a60d41077cd11e8aa5c613ffad287f8755e4fbcbe6c18dfc5b6cc5a03</cites><orcidid>0000-0002-9760-362X ; 0000-0002-3607-690X ; 0000-0002-2311-1905 ; 0000-0003-3155-8325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33026393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barroso-Solares, Suset</creatorcontrib><creatorcontrib>Cuadra-Rodriguez, Daniel</creatorcontrib><creatorcontrib>Rodriguez-Mendez, Maria Luz</creatorcontrib><creatorcontrib>Rodriguez-Perez, Miguel Angel</creatorcontrib><creatorcontrib>Pinto, Javier</creatorcontrib><title>A new generation of hollow polymeric microfibers produced by gas dissolution foaming</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>A new and straightforward route to produce polymeric hollow microfibers has been proposed. Polycaprolactone (PCL) hollow fibers are obtained for the first time using an environmentally friendly gas dissolution foaming approach, overcoming its limitations to induce porosity on samples in the micrometric range. Different porous morphologies are achieved from solid PCL microfibers with a well-controlled diameter obtained by conventional electrospinning. The optimization of the foaming parameters provides two sets of well-defined hollow fibers, one showing smooth surfaces and the other presenting an enhanced surface porosity. Accordingly, gas dissolution foaming proves to be not only suitable for the production of hollow polymeric microfibers, but is also capable of providing diverse porous morphologies from the same precursor, solid fibers. Moreover, a preliminary study about the suitability of this new generation of foamed hollow polymeric fibers for drug delivery is carried out, aiming to take advantage of the enhanced surface area and tunable morphology obtained by using the proposed new production method. It is found that the foamed microfibers can be loaded with up to 15 wt% of ibuprofen while preserving the morphology of each kind of fiber. Then, foamed PCL fibers presenting a hollow structure and surface porosity show a remarkable constant release of ibuprofen for almost one and a half days. In contrast, the original solid fibers do not present such behavior, releasing all the ibuprofen in about seven hours. A new and straightforward route to produce polymeric hollow microfibers has been proposed, for the first time, using a gas dissolution foaming approach.</description><subject>Dissolution</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Drug Liberation</subject><subject>Fibers</subject><subject>Foaming</subject><subject>Ibuprofen</subject><subject>Ibuprofen - chemistry</subject><subject>Manufactured Materials</subject><subject>Microfibers</subject><subject>Morphology</subject><subject>Nonsteroidal anti-inflammatory drugs</subject><subject>Optimization</subject><subject>Plastic foam</subject><subject>Polycaprolactone</subject><subject>Polyesters - chemistry</subject><subject>Porosity</subject><subject>Production methods</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kTtPwzAUhS0EolXpwg4yYkMK2HHsOGNbnlIllgxskeNHSZXEwU5U9d9j2lI2vFxL5_O59x4DcInRPUYke1CoLxGmDIkTMI4RRVFKMT893tHHCEy9X6NwOGacJOdgRAiKGcnIGOQz2OoNXOlWO9FXtoXWwE9b13YDO1tvG-0qCZtKOmuqUjsPO2fVILWC5RauhIeq8t7Ww-6tsaKp2tUFODOi9np6qBOQPz_li9do-f7ytpgtI0myrI-wiNMk44IhlWCUplJhrLkQVDJMjBEq5qnhKaU6MaUsNZOYKyNpyaSkApEJuN3bhpG-Bu37Ym0H14aORZwknCcxzVig7vZUWMF7p03RuaoRbltgVPxEWDyifL6LcBbg64PlUDZaHdHfwAJwtQecl0f17w-CfvOfXnTKkG-xboHV</recordid><startdate>20201014</startdate><enddate>20201014</enddate><creator>Barroso-Solares, Suset</creator><creator>Cuadra-Rodriguez, Daniel</creator><creator>Rodriguez-Mendez, Maria Luz</creator><creator>Rodriguez-Perez, Miguel Angel</creator><creator>Pinto, Javier</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-9760-362X</orcidid><orcidid>https://orcid.org/0000-0002-3607-690X</orcidid><orcidid>https://orcid.org/0000-0002-2311-1905</orcidid><orcidid>https://orcid.org/0000-0003-3155-8325</orcidid></search><sort><creationdate>20201014</creationdate><title>A new generation of hollow polymeric microfibers produced by gas dissolution foaming</title><author>Barroso-Solares, Suset ; Cuadra-Rodriguez, Daniel ; Rodriguez-Mendez, Maria Luz ; Rodriguez-Perez, Miguel Angel ; Pinto, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-1a27498a60d41077cd11e8aa5c613ffad287f8755e4fbcbe6c18dfc5b6cc5a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dissolution</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Drug Liberation</topic><topic>Fibers</topic><topic>Foaming</topic><topic>Ibuprofen</topic><topic>Ibuprofen - chemistry</topic><topic>Manufactured Materials</topic><topic>Microfibers</topic><topic>Morphology</topic><topic>Nonsteroidal anti-inflammatory drugs</topic><topic>Optimization</topic><topic>Plastic foam</topic><topic>Polycaprolactone</topic><topic>Polyesters - chemistry</topic><topic>Porosity</topic><topic>Production methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barroso-Solares, Suset</creatorcontrib><creatorcontrib>Cuadra-Rodriguez, Daniel</creatorcontrib><creatorcontrib>Rodriguez-Mendez, Maria Luz</creatorcontrib><creatorcontrib>Rodriguez-Perez, Miguel Angel</creatorcontrib><creatorcontrib>Pinto, Javier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barroso-Solares, Suset</au><au>Cuadra-Rodriguez, Daniel</au><au>Rodriguez-Mendez, Maria Luz</au><au>Rodriguez-Perez, Miguel Angel</au><au>Pinto, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new generation of hollow polymeric microfibers produced by gas dissolution foaming</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2020-10-14</date><risdate>2020</risdate><volume>8</volume><issue>38</issue><spage>882</spage><epage>8829</epage><pages>882-8829</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>A new and straightforward route to produce polymeric hollow microfibers has been proposed. Polycaprolactone (PCL) hollow fibers are obtained for the first time using an environmentally friendly gas dissolution foaming approach, overcoming its limitations to induce porosity on samples in the micrometric range. Different porous morphologies are achieved from solid PCL microfibers with a well-controlled diameter obtained by conventional electrospinning. The optimization of the foaming parameters provides two sets of well-defined hollow fibers, one showing smooth surfaces and the other presenting an enhanced surface porosity. Accordingly, gas dissolution foaming proves to be not only suitable for the production of hollow polymeric microfibers, but is also capable of providing diverse porous morphologies from the same precursor, solid fibers. Moreover, a preliminary study about the suitability of this new generation of foamed hollow polymeric fibers for drug delivery is carried out, aiming to take advantage of the enhanced surface area and tunable morphology obtained by using the proposed new production method. It is found that the foamed microfibers can be loaded with up to 15 wt% of ibuprofen while preserving the morphology of each kind of fiber. Then, foamed PCL fibers presenting a hollow structure and surface porosity show a remarkable constant release of ibuprofen for almost one and a half days. In contrast, the original solid fibers do not present such behavior, releasing all the ibuprofen in about seven hours. A new and straightforward route to produce polymeric hollow microfibers has been proposed, for the first time, using a gas dissolution foaming approach.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33026393</pmid><doi>10.1039/d0tb01560a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9760-362X</orcidid><orcidid>https://orcid.org/0000-0002-3607-690X</orcidid><orcidid>https://orcid.org/0000-0002-2311-1905</orcidid><orcidid>https://orcid.org/0000-0003-3155-8325</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2020-10, Vol.8 (38), p.882-8829
issn 2050-750X
2050-7518
language eng
recordid cdi_rsc_primary_d0tb01560a
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Dissolution
Drug delivery
Drug Delivery Systems
Drug Liberation
Fibers
Foaming
Ibuprofen
Ibuprofen - chemistry
Manufactured Materials
Microfibers
Morphology
Nonsteroidal anti-inflammatory drugs
Optimization
Plastic foam
Polycaprolactone
Polyesters - chemistry
Porosity
Production methods
title A new generation of hollow polymeric microfibers produced by gas dissolution foaming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20generation%20of%20hollow%20polymeric%20microfibers%20produced%20by%20gas%20dissolution%20foaming&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Barroso-Solares,%20Suset&rft.date=2020-10-14&rft.volume=8&rft.issue=38&rft.spage=882&rft.epage=8829&rft.pages=882-8829&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d0tb01560a&rft_dat=%3Cproquest_rsc_p%3E2448842596%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448842596&rft_id=info:pmid/33026393&rfr_iscdi=true