A new generation of hollow polymeric microfibers produced by gas dissolution foaming
A new and straightforward route to produce polymeric hollow microfibers has been proposed. Polycaprolactone (PCL) hollow fibers are obtained for the first time using an environmentally friendly gas dissolution foaming approach, overcoming its limitations to induce porosity on samples in the micromet...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2020-10, Vol.8 (38), p.882-8829 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8829 |
---|---|
container_issue | 38 |
container_start_page | 882 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 8 |
creator | Barroso-Solares, Suset Cuadra-Rodriguez, Daniel Rodriguez-Mendez, Maria Luz Rodriguez-Perez, Miguel Angel Pinto, Javier |
description | A new and straightforward route to produce polymeric hollow microfibers has been proposed. Polycaprolactone (PCL) hollow fibers are obtained for the first time using an environmentally friendly gas dissolution foaming approach, overcoming its limitations to induce porosity on samples in the micrometric range. Different porous morphologies are achieved from solid PCL microfibers with a well-controlled diameter obtained by conventional electrospinning. The optimization of the foaming parameters provides two sets of well-defined hollow fibers, one showing smooth surfaces and the other presenting an enhanced surface porosity. Accordingly, gas dissolution foaming proves to be not only suitable for the production of hollow polymeric microfibers, but is also capable of providing diverse porous morphologies from the same precursor, solid fibers. Moreover, a preliminary study about the suitability of this new generation of foamed hollow polymeric fibers for drug delivery is carried out, aiming to take advantage of the enhanced surface area and tunable morphology obtained by using the proposed new production method. It is found that the foamed microfibers can be loaded with up to 15 wt% of ibuprofen while preserving the morphology of each kind of fiber. Then, foamed PCL fibers presenting a hollow structure and surface porosity show a remarkable constant release of ibuprofen for almost one and a half days. In contrast, the original solid fibers do not present such behavior, releasing all the ibuprofen in about seven hours.
A new and straightforward route to produce polymeric hollow microfibers has been proposed, for the first time, using a gas dissolution foaming approach. |
doi_str_mv | 10.1039/d0tb01560a |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0tb01560a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448842596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-1a27498a60d41077cd11e8aa5c613ffad287f8755e4fbcbe6c18dfc5b6cc5a03</originalsourceid><addsrcrecordid>eNp9kTtPwzAUhS0EolXpwg4yYkMK2HHsOGNbnlIllgxskeNHSZXEwU5U9d9j2lI2vFxL5_O59x4DcInRPUYke1CoLxGmDIkTMI4RRVFKMT893tHHCEy9X6NwOGacJOdgRAiKGcnIGOQz2OoNXOlWO9FXtoXWwE9b13YDO1tvG-0qCZtKOmuqUjsPO2fVILWC5RauhIeq8t7Ww-6tsaKp2tUFODOi9np6qBOQPz_li9do-f7ytpgtI0myrI-wiNMk44IhlWCUplJhrLkQVDJMjBEq5qnhKaU6MaUsNZOYKyNpyaSkApEJuN3bhpG-Bu37Ym0H14aORZwknCcxzVig7vZUWMF7p03RuaoRbltgVPxEWDyifL6LcBbg64PlUDZaHdHfwAJwtQecl0f17w-CfvOfXnTKkG-xboHV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448842596</pqid></control><display><type>article</type><title>A new generation of hollow polymeric microfibers produced by gas dissolution foaming</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Barroso-Solares, Suset ; Cuadra-Rodriguez, Daniel ; Rodriguez-Mendez, Maria Luz ; Rodriguez-Perez, Miguel Angel ; Pinto, Javier</creator><creatorcontrib>Barroso-Solares, Suset ; Cuadra-Rodriguez, Daniel ; Rodriguez-Mendez, Maria Luz ; Rodriguez-Perez, Miguel Angel ; Pinto, Javier</creatorcontrib><description>A new and straightforward route to produce polymeric hollow microfibers has been proposed. Polycaprolactone (PCL) hollow fibers are obtained for the first time using an environmentally friendly gas dissolution foaming approach, overcoming its limitations to induce porosity on samples in the micrometric range. Different porous morphologies are achieved from solid PCL microfibers with a well-controlled diameter obtained by conventional electrospinning. The optimization of the foaming parameters provides two sets of well-defined hollow fibers, one showing smooth surfaces and the other presenting an enhanced surface porosity. Accordingly, gas dissolution foaming proves to be not only suitable for the production of hollow polymeric microfibers, but is also capable of providing diverse porous morphologies from the same precursor, solid fibers. Moreover, a preliminary study about the suitability of this new generation of foamed hollow polymeric fibers for drug delivery is carried out, aiming to take advantage of the enhanced surface area and tunable morphology obtained by using the proposed new production method. It is found that the foamed microfibers can be loaded with up to 15 wt% of ibuprofen while preserving the morphology of each kind of fiber. Then, foamed PCL fibers presenting a hollow structure and surface porosity show a remarkable constant release of ibuprofen for almost one and a half days. In contrast, the original solid fibers do not present such behavior, releasing all the ibuprofen in about seven hours.
A new and straightforward route to produce polymeric hollow microfibers has been proposed, for the first time, using a gas dissolution foaming approach.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d0tb01560a</identifier><identifier>PMID: 33026393</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Dissolution ; Drug delivery ; Drug Delivery Systems ; Drug Liberation ; Fibers ; Foaming ; Ibuprofen ; Ibuprofen - chemistry ; Manufactured Materials ; Microfibers ; Morphology ; Nonsteroidal anti-inflammatory drugs ; Optimization ; Plastic foam ; Polycaprolactone ; Polyesters - chemistry ; Porosity ; Production methods</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2020-10, Vol.8 (38), p.882-8829</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-1a27498a60d41077cd11e8aa5c613ffad287f8755e4fbcbe6c18dfc5b6cc5a03</citedby><cites>FETCH-LOGICAL-c399t-1a27498a60d41077cd11e8aa5c613ffad287f8755e4fbcbe6c18dfc5b6cc5a03</cites><orcidid>0000-0002-9760-362X ; 0000-0002-3607-690X ; 0000-0002-2311-1905 ; 0000-0003-3155-8325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33026393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barroso-Solares, Suset</creatorcontrib><creatorcontrib>Cuadra-Rodriguez, Daniel</creatorcontrib><creatorcontrib>Rodriguez-Mendez, Maria Luz</creatorcontrib><creatorcontrib>Rodriguez-Perez, Miguel Angel</creatorcontrib><creatorcontrib>Pinto, Javier</creatorcontrib><title>A new generation of hollow polymeric microfibers produced by gas dissolution foaming</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>A new and straightforward route to produce polymeric hollow microfibers has been proposed. Polycaprolactone (PCL) hollow fibers are obtained for the first time using an environmentally friendly gas dissolution foaming approach, overcoming its limitations to induce porosity on samples in the micrometric range. Different porous morphologies are achieved from solid PCL microfibers with a well-controlled diameter obtained by conventional electrospinning. The optimization of the foaming parameters provides two sets of well-defined hollow fibers, one showing smooth surfaces and the other presenting an enhanced surface porosity. Accordingly, gas dissolution foaming proves to be not only suitable for the production of hollow polymeric microfibers, but is also capable of providing diverse porous morphologies from the same precursor, solid fibers. Moreover, a preliminary study about the suitability of this new generation of foamed hollow polymeric fibers for drug delivery is carried out, aiming to take advantage of the enhanced surface area and tunable morphology obtained by using the proposed new production method. It is found that the foamed microfibers can be loaded with up to 15 wt% of ibuprofen while preserving the morphology of each kind of fiber. Then, foamed PCL fibers presenting a hollow structure and surface porosity show a remarkable constant release of ibuprofen for almost one and a half days. In contrast, the original solid fibers do not present such behavior, releasing all the ibuprofen in about seven hours.
A new and straightforward route to produce polymeric hollow microfibers has been proposed, for the first time, using a gas dissolution foaming approach.</description><subject>Dissolution</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Drug Liberation</subject><subject>Fibers</subject><subject>Foaming</subject><subject>Ibuprofen</subject><subject>Ibuprofen - chemistry</subject><subject>Manufactured Materials</subject><subject>Microfibers</subject><subject>Morphology</subject><subject>Nonsteroidal anti-inflammatory drugs</subject><subject>Optimization</subject><subject>Plastic foam</subject><subject>Polycaprolactone</subject><subject>Polyesters - chemistry</subject><subject>Porosity</subject><subject>Production methods</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kTtPwzAUhS0EolXpwg4yYkMK2HHsOGNbnlIllgxskeNHSZXEwU5U9d9j2lI2vFxL5_O59x4DcInRPUYke1CoLxGmDIkTMI4RRVFKMT893tHHCEy9X6NwOGacJOdgRAiKGcnIGOQz2OoNXOlWO9FXtoXWwE9b13YDO1tvG-0qCZtKOmuqUjsPO2fVILWC5RauhIeq8t7Ww-6tsaKp2tUFODOi9np6qBOQPz_li9do-f7ytpgtI0myrI-wiNMk44IhlWCUplJhrLkQVDJMjBEq5qnhKaU6MaUsNZOYKyNpyaSkApEJuN3bhpG-Bu37Ym0H14aORZwknCcxzVig7vZUWMF7p03RuaoRbltgVPxEWDyifL6LcBbg64PlUDZaHdHfwAJwtQecl0f17w-CfvOfXnTKkG-xboHV</recordid><startdate>20201014</startdate><enddate>20201014</enddate><creator>Barroso-Solares, Suset</creator><creator>Cuadra-Rodriguez, Daniel</creator><creator>Rodriguez-Mendez, Maria Luz</creator><creator>Rodriguez-Perez, Miguel Angel</creator><creator>Pinto, Javier</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-9760-362X</orcidid><orcidid>https://orcid.org/0000-0002-3607-690X</orcidid><orcidid>https://orcid.org/0000-0002-2311-1905</orcidid><orcidid>https://orcid.org/0000-0003-3155-8325</orcidid></search><sort><creationdate>20201014</creationdate><title>A new generation of hollow polymeric microfibers produced by gas dissolution foaming</title><author>Barroso-Solares, Suset ; Cuadra-Rodriguez, Daniel ; Rodriguez-Mendez, Maria Luz ; Rodriguez-Perez, Miguel Angel ; Pinto, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-1a27498a60d41077cd11e8aa5c613ffad287f8755e4fbcbe6c18dfc5b6cc5a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dissolution</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Drug Liberation</topic><topic>Fibers</topic><topic>Foaming</topic><topic>Ibuprofen</topic><topic>Ibuprofen - chemistry</topic><topic>Manufactured Materials</topic><topic>Microfibers</topic><topic>Morphology</topic><topic>Nonsteroidal anti-inflammatory drugs</topic><topic>Optimization</topic><topic>Plastic foam</topic><topic>Polycaprolactone</topic><topic>Polyesters - chemistry</topic><topic>Porosity</topic><topic>Production methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barroso-Solares, Suset</creatorcontrib><creatorcontrib>Cuadra-Rodriguez, Daniel</creatorcontrib><creatorcontrib>Rodriguez-Mendez, Maria Luz</creatorcontrib><creatorcontrib>Rodriguez-Perez, Miguel Angel</creatorcontrib><creatorcontrib>Pinto, Javier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barroso-Solares, Suset</au><au>Cuadra-Rodriguez, Daniel</au><au>Rodriguez-Mendez, Maria Luz</au><au>Rodriguez-Perez, Miguel Angel</au><au>Pinto, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new generation of hollow polymeric microfibers produced by gas dissolution foaming</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2020-10-14</date><risdate>2020</risdate><volume>8</volume><issue>38</issue><spage>882</spage><epage>8829</epage><pages>882-8829</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>A new and straightforward route to produce polymeric hollow microfibers has been proposed. Polycaprolactone (PCL) hollow fibers are obtained for the first time using an environmentally friendly gas dissolution foaming approach, overcoming its limitations to induce porosity on samples in the micrometric range. Different porous morphologies are achieved from solid PCL microfibers with a well-controlled diameter obtained by conventional electrospinning. The optimization of the foaming parameters provides two sets of well-defined hollow fibers, one showing smooth surfaces and the other presenting an enhanced surface porosity. Accordingly, gas dissolution foaming proves to be not only suitable for the production of hollow polymeric microfibers, but is also capable of providing diverse porous morphologies from the same precursor, solid fibers. Moreover, a preliminary study about the suitability of this new generation of foamed hollow polymeric fibers for drug delivery is carried out, aiming to take advantage of the enhanced surface area and tunable morphology obtained by using the proposed new production method. It is found that the foamed microfibers can be loaded with up to 15 wt% of ibuprofen while preserving the morphology of each kind of fiber. Then, foamed PCL fibers presenting a hollow structure and surface porosity show a remarkable constant release of ibuprofen for almost one and a half days. In contrast, the original solid fibers do not present such behavior, releasing all the ibuprofen in about seven hours.
A new and straightforward route to produce polymeric hollow microfibers has been proposed, for the first time, using a gas dissolution foaming approach.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33026393</pmid><doi>10.1039/d0tb01560a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9760-362X</orcidid><orcidid>https://orcid.org/0000-0002-3607-690X</orcidid><orcidid>https://orcid.org/0000-0002-2311-1905</orcidid><orcidid>https://orcid.org/0000-0003-3155-8325</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2020-10, Vol.8 (38), p.882-8829 |
issn | 2050-750X 2050-7518 |
language | eng |
recordid | cdi_rsc_primary_d0tb01560a |
source | MEDLINE; Royal Society Of Chemistry Journals 2008- |
subjects | Dissolution Drug delivery Drug Delivery Systems Drug Liberation Fibers Foaming Ibuprofen Ibuprofen - chemistry Manufactured Materials Microfibers Morphology Nonsteroidal anti-inflammatory drugs Optimization Plastic foam Polycaprolactone Polyesters - chemistry Porosity Production methods |
title | A new generation of hollow polymeric microfibers produced by gas dissolution foaming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20generation%20of%20hollow%20polymeric%20microfibers%20produced%20by%20gas%20dissolution%20foaming&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Barroso-Solares,%20Suset&rft.date=2020-10-14&rft.volume=8&rft.issue=38&rft.spage=882&rft.epage=8829&rft.pages=882-8829&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d0tb01560a&rft_dat=%3Cproquest_rsc_p%3E2448842596%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448842596&rft_id=info:pmid/33026393&rfr_iscdi=true |