Mass transport-enhanced electrodeposition of Ni-S-P-O films on nickel foam for electrochemical water splitting

Electrochemical water splitting is one of the most promising approaches for sustainable energy conversion and storage toward a future hydrogen society. This demands durable and affordable electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). In this stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-03, Vol.9 (12), p.7736-7749
Hauptverfasser: Marquez-Montes, Raul A, Kawashima, Kenta, Son, Yoon Jun, Weeks, Jason A, Sun, H. Hohyun, Celio, Hugo, Ramos-Sánchez, Víctor H, Mullins, C. Buddie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7749
container_issue 12
container_start_page 7736
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Marquez-Montes, Raul A
Kawashima, Kenta
Son, Yoon Jun
Weeks, Jason A
Sun, H. Hohyun
Celio, Hugo
Ramos-Sánchez, Víctor H
Mullins, C. Buddie
description Electrochemical water splitting is one of the most promising approaches for sustainable energy conversion and storage toward a future hydrogen society. This demands durable and affordable electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). In this study, we report the preparation of uniform Ni-P-O, Ni-S-O, and Ni-S-P-O electrocatalytic films on nickel foam (NF) substrates via flow cell-assisted electrodeposition. Remarkably, electrodeposition onto 12 cm 2 substrates was optimized by strategically varying critical parameters. The high quality and reproducibility of the materials is attributed to the use of a 3D-printed flow cell with a tailored design. Then, the as-fabricated electrodes were tested for overall water splitting in the same flow cell under alkaline conditions. The best-performing sample, NiSP/NF, required relatively low overpotentials of 93 mV for the HER and 259 mV for the OER to produce a current density of 10 mA cm −2 . Importantly, the electrodeposited films underwent oxidation into amorphous nickel (oxy)hydroxides and oxidized S and P species, improving both HER and OER performance. The superior electrocatalytic performance of the Ni-S-P-O films originates from the unique reconstruction process during the HER/OER. Furthermore, the overall water splitting test using the NiSP/NF couple required a low cell voltage of only 1.85 V to deliver a current density of 100 mA cm −2 . Overall, we demonstrate that high-quality electrocatalysts can be obtained using a simple and reproducible electrodeposition method in a robust 3D-printed flow cell. A reproducible and efficient electrodeposition method in a 3D-printed flow cell is used to synthesize high-quality Ni-S-P-O films on nickel foam for overall water splitting.
doi_str_mv 10.1039/d0ta12097a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0ta12097a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506726625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-cd319e49968d66b3367a6ae693fded29aed0ecb940ba7739ef340a2e091945fa3</originalsourceid><addsrcrecordid>eNpFkN9LwzAQgIMoOOZefBcCvgnRtGnT5nHMn6BOcD6XLLm4zDapSYb431udznu4O47v7uBD6Dij5xll4kLTJLOcikruoVFOS0qqQvD9XV_Xh2gS45oOUVPKhRgh9yBjxClIF3sfEgG3kk6BxtCCSsFr6H20yXqHvcGPljyTJzLHxrZdxMPQWfUGLTZedkMKf2tqBZ1VssUfMkHAsW9tSta9HqEDI9sIk986Ri_XV4vZLbmf39zNpvdEsVIkojTLBBRC8FpzvmSMV5JL4IIZDToXEjQFtRQFXcqqYgIMK6jMgYpMFKWRbIxOt3f74N83EFOz9pvghpdNXlJe5Zzn5UCdbSkVfIwBTNMH28nw2WS0-VbaXNLF9EfpdIBPtnCIasf9K2dfJAd0Eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506726625</pqid></control><display><type>article</type><title>Mass transport-enhanced electrodeposition of Ni-S-P-O films on nickel foam for electrochemical water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Marquez-Montes, Raul A ; Kawashima, Kenta ; Son, Yoon Jun ; Weeks, Jason A ; Sun, H. Hohyun ; Celio, Hugo ; Ramos-Sánchez, Víctor H ; Mullins, C. Buddie</creator><creatorcontrib>Marquez-Montes, Raul A ; Kawashima, Kenta ; Son, Yoon Jun ; Weeks, Jason A ; Sun, H. Hohyun ; Celio, Hugo ; Ramos-Sánchez, Víctor H ; Mullins, C. Buddie</creatorcontrib><description>Electrochemical water splitting is one of the most promising approaches for sustainable energy conversion and storage toward a future hydrogen society. This demands durable and affordable electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). In this study, we report the preparation of uniform Ni-P-O, Ni-S-O, and Ni-S-P-O electrocatalytic films on nickel foam (NF) substrates via flow cell-assisted electrodeposition. Remarkably, electrodeposition onto 12 cm 2 substrates was optimized by strategically varying critical parameters. The high quality and reproducibility of the materials is attributed to the use of a 3D-printed flow cell with a tailored design. Then, the as-fabricated electrodes were tested for overall water splitting in the same flow cell under alkaline conditions. The best-performing sample, NiSP/NF, required relatively low overpotentials of 93 mV for the HER and 259 mV for the OER to produce a current density of 10 mA cm −2 . Importantly, the electrodeposited films underwent oxidation into amorphous nickel (oxy)hydroxides and oxidized S and P species, improving both HER and OER performance. The superior electrocatalytic performance of the Ni-S-P-O films originates from the unique reconstruction process during the HER/OER. Furthermore, the overall water splitting test using the NiSP/NF couple required a low cell voltage of only 1.85 V to deliver a current density of 100 mA cm −2 . Overall, we demonstrate that high-quality electrocatalysts can be obtained using a simple and reproducible electrodeposition method in a robust 3D-printed flow cell. A reproducible and efficient electrodeposition method in a 3D-printed flow cell is used to synthesize high-quality Ni-S-P-O films on nickel foam for overall water splitting.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta12097a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Current density ; Electrocatalysts ; Electrochemical analysis ; Electrochemistry ; Electrodeposition ; Energy conversion ; Energy storage ; Hydrogen evolution reactions ; Hydroxides ; Mass transport ; Metal foams ; Nickel ; Oxidation ; Oxygen evolution reactions ; Renewable energy ; Reproducibility ; Splitting ; Substrates ; Sustainability ; Three dimensional flow ; Three dimensional printing ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-03, Vol.9 (12), p.7736-7749</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-cd319e49968d66b3367a6ae693fded29aed0ecb940ba7739ef340a2e091945fa3</citedby><cites>FETCH-LOGICAL-c359t-cd319e49968d66b3367a6ae693fded29aed0ecb940ba7739ef340a2e091945fa3</cites><orcidid>0000-0003-0335-6128 ; 0000-0001-7318-6115 ; 0000-0003-1030-4801 ; 0000-0002-0341-5469 ; 0000-0003-3885-5007 ; 0000-0003-1704-2314 ; 0000-0001-8030-0393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Marquez-Montes, Raul A</creatorcontrib><creatorcontrib>Kawashima, Kenta</creatorcontrib><creatorcontrib>Son, Yoon Jun</creatorcontrib><creatorcontrib>Weeks, Jason A</creatorcontrib><creatorcontrib>Sun, H. Hohyun</creatorcontrib><creatorcontrib>Celio, Hugo</creatorcontrib><creatorcontrib>Ramos-Sánchez, Víctor H</creatorcontrib><creatorcontrib>Mullins, C. Buddie</creatorcontrib><title>Mass transport-enhanced electrodeposition of Ni-S-P-O films on nickel foam for electrochemical water splitting</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Electrochemical water splitting is one of the most promising approaches for sustainable energy conversion and storage toward a future hydrogen society. This demands durable and affordable electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). In this study, we report the preparation of uniform Ni-P-O, Ni-S-O, and Ni-S-P-O electrocatalytic films on nickel foam (NF) substrates via flow cell-assisted electrodeposition. Remarkably, electrodeposition onto 12 cm 2 substrates was optimized by strategically varying critical parameters. The high quality and reproducibility of the materials is attributed to the use of a 3D-printed flow cell with a tailored design. Then, the as-fabricated electrodes were tested for overall water splitting in the same flow cell under alkaline conditions. The best-performing sample, NiSP/NF, required relatively low overpotentials of 93 mV for the HER and 259 mV for the OER to produce a current density of 10 mA cm −2 . Importantly, the electrodeposited films underwent oxidation into amorphous nickel (oxy)hydroxides and oxidized S and P species, improving both HER and OER performance. The superior electrocatalytic performance of the Ni-S-P-O films originates from the unique reconstruction process during the HER/OER. Furthermore, the overall water splitting test using the NiSP/NF couple required a low cell voltage of only 1.85 V to deliver a current density of 100 mA cm −2 . Overall, we demonstrate that high-quality electrocatalysts can be obtained using a simple and reproducible electrodeposition method in a robust 3D-printed flow cell. A reproducible and efficient electrodeposition method in a 3D-printed flow cell is used to synthesize high-quality Ni-S-P-O films on nickel foam for overall water splitting.</description><subject>Current density</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodeposition</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Hydrogen evolution reactions</subject><subject>Hydroxides</subject><subject>Mass transport</subject><subject>Metal foams</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Renewable energy</subject><subject>Reproducibility</subject><subject>Splitting</subject><subject>Substrates</subject><subject>Sustainability</subject><subject>Three dimensional flow</subject><subject>Three dimensional printing</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkN9LwzAQgIMoOOZefBcCvgnRtGnT5nHMn6BOcD6XLLm4zDapSYb431udznu4O47v7uBD6Dij5xll4kLTJLOcikruoVFOS0qqQvD9XV_Xh2gS45oOUVPKhRgh9yBjxClIF3sfEgG3kk6BxtCCSsFr6H20yXqHvcGPljyTJzLHxrZdxMPQWfUGLTZedkMKf2tqBZ1VssUfMkHAsW9tSta9HqEDI9sIk986Ri_XV4vZLbmf39zNpvdEsVIkojTLBBRC8FpzvmSMV5JL4IIZDToXEjQFtRQFXcqqYgIMK6jMgYpMFKWRbIxOt3f74N83EFOz9pvghpdNXlJe5Zzn5UCdbSkVfIwBTNMH28nw2WS0-VbaXNLF9EfpdIBPtnCIasf9K2dfJAd0Eg</recordid><startdate>20210330</startdate><enddate>20210330</enddate><creator>Marquez-Montes, Raul A</creator><creator>Kawashima, Kenta</creator><creator>Son, Yoon Jun</creator><creator>Weeks, Jason A</creator><creator>Sun, H. Hohyun</creator><creator>Celio, Hugo</creator><creator>Ramos-Sánchez, Víctor H</creator><creator>Mullins, C. Buddie</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0335-6128</orcidid><orcidid>https://orcid.org/0000-0001-7318-6115</orcidid><orcidid>https://orcid.org/0000-0003-1030-4801</orcidid><orcidid>https://orcid.org/0000-0002-0341-5469</orcidid><orcidid>https://orcid.org/0000-0003-3885-5007</orcidid><orcidid>https://orcid.org/0000-0003-1704-2314</orcidid><orcidid>https://orcid.org/0000-0001-8030-0393</orcidid></search><sort><creationdate>20210330</creationdate><title>Mass transport-enhanced electrodeposition of Ni-S-P-O films on nickel foam for electrochemical water splitting</title><author>Marquez-Montes, Raul A ; Kawashima, Kenta ; Son, Yoon Jun ; Weeks, Jason A ; Sun, H. Hohyun ; Celio, Hugo ; Ramos-Sánchez, Víctor H ; Mullins, C. Buddie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-cd319e49968d66b3367a6ae693fded29aed0ecb940ba7739ef340a2e091945fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Current density</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodeposition</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Hydrogen evolution reactions</topic><topic>Hydroxides</topic><topic>Mass transport</topic><topic>Metal foams</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Renewable energy</topic><topic>Reproducibility</topic><topic>Splitting</topic><topic>Substrates</topic><topic>Sustainability</topic><topic>Three dimensional flow</topic><topic>Three dimensional printing</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marquez-Montes, Raul A</creatorcontrib><creatorcontrib>Kawashima, Kenta</creatorcontrib><creatorcontrib>Son, Yoon Jun</creatorcontrib><creatorcontrib>Weeks, Jason A</creatorcontrib><creatorcontrib>Sun, H. Hohyun</creatorcontrib><creatorcontrib>Celio, Hugo</creatorcontrib><creatorcontrib>Ramos-Sánchez, Víctor H</creatorcontrib><creatorcontrib>Mullins, C. Buddie</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marquez-Montes, Raul A</au><au>Kawashima, Kenta</au><au>Son, Yoon Jun</au><au>Weeks, Jason A</au><au>Sun, H. Hohyun</au><au>Celio, Hugo</au><au>Ramos-Sánchez, Víctor H</au><au>Mullins, C. Buddie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass transport-enhanced electrodeposition of Ni-S-P-O films on nickel foam for electrochemical water splitting</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-03-30</date><risdate>2021</risdate><volume>9</volume><issue>12</issue><spage>7736</spage><epage>7749</epage><pages>7736-7749</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Electrochemical water splitting is one of the most promising approaches for sustainable energy conversion and storage toward a future hydrogen society. This demands durable and affordable electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). In this study, we report the preparation of uniform Ni-P-O, Ni-S-O, and Ni-S-P-O electrocatalytic films on nickel foam (NF) substrates via flow cell-assisted electrodeposition. Remarkably, electrodeposition onto 12 cm 2 substrates was optimized by strategically varying critical parameters. The high quality and reproducibility of the materials is attributed to the use of a 3D-printed flow cell with a tailored design. Then, the as-fabricated electrodes were tested for overall water splitting in the same flow cell under alkaline conditions. The best-performing sample, NiSP/NF, required relatively low overpotentials of 93 mV for the HER and 259 mV for the OER to produce a current density of 10 mA cm −2 . Importantly, the electrodeposited films underwent oxidation into amorphous nickel (oxy)hydroxides and oxidized S and P species, improving both HER and OER performance. The superior electrocatalytic performance of the Ni-S-P-O films originates from the unique reconstruction process during the HER/OER. Furthermore, the overall water splitting test using the NiSP/NF couple required a low cell voltage of only 1.85 V to deliver a current density of 100 mA cm −2 . Overall, we demonstrate that high-quality electrocatalysts can be obtained using a simple and reproducible electrodeposition method in a robust 3D-printed flow cell. A reproducible and efficient electrodeposition method in a 3D-printed flow cell is used to synthesize high-quality Ni-S-P-O films on nickel foam for overall water splitting.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta12097a</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0335-6128</orcidid><orcidid>https://orcid.org/0000-0001-7318-6115</orcidid><orcidid>https://orcid.org/0000-0003-1030-4801</orcidid><orcidid>https://orcid.org/0000-0002-0341-5469</orcidid><orcidid>https://orcid.org/0000-0003-3885-5007</orcidid><orcidid>https://orcid.org/0000-0003-1704-2314</orcidid><orcidid>https://orcid.org/0000-0001-8030-0393</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-03, Vol.9 (12), p.7736-7749
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_d0ta12097a
source Royal Society Of Chemistry Journals 2008-
subjects Current density
Electrocatalysts
Electrochemical analysis
Electrochemistry
Electrodeposition
Energy conversion
Energy storage
Hydrogen evolution reactions
Hydroxides
Mass transport
Metal foams
Nickel
Oxidation
Oxygen evolution reactions
Renewable energy
Reproducibility
Splitting
Substrates
Sustainability
Three dimensional flow
Three dimensional printing
Water splitting
title Mass transport-enhanced electrodeposition of Ni-S-P-O films on nickel foam for electrochemical water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20transport-enhanced%20electrodeposition%20of%20Ni-S-P-O%20films%20on%20nickel%20foam%20for%20electrochemical%20water%20splitting&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Marquez-Montes,%20Raul%20A&rft.date=2021-03-30&rft.volume=9&rft.issue=12&rft.spage=7736&rft.epage=7749&rft.pages=7736-7749&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta12097a&rft_dat=%3Cproquest_rsc_p%3E2506726625%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506726625&rft_id=info:pmid/&rfr_iscdi=true