coupling of CoP with MoO for enhanced hydrogen evolution
The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting. In this work, we report on using molybdenum trioxide as an intermediary to in situ synthesize strongly coupled porous CoP/MoO 2 hybrid...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-08, Vol.8 (31), p.1618-1623 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1623 |
---|---|
container_issue | 31 |
container_start_page | 1618 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Wang, Jun Cheng, Hui Ren, Shiyu Zhang, Lili Ding, Liang-Xin Wang, Haihui |
description | The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting. In this work, we report on using molybdenum trioxide as an intermediary to
in situ
synthesize strongly coupled porous CoP/MoO
2
hybrid thin films for the HER. By virtue of modulating the H
2
O adsorption energy on the surface of CoP, together with the abundant and accessible active sites derived from the
in situ
formation of a porous structure, the as-prepared CoP/MoO
2
hybrid thin films exhibit an excellent HER catalytic performance, only requiring a small overpotential of 41 mV to support a current density of 20 mA cm
−2
, which is comparable to the catalytic performance of the Pt/C benchmark.
The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting. |
doi_str_mv | 10.1039/d0ta03736b |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d0ta03736b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d0ta03736b</sourcerecordid><originalsourceid>FETCH-rsc_primary_d0ta03736b3</originalsourceid><addsrcrecordid>eNpjYBAyNNAzNDC21E8xKEk0MDY3NktiYuA0MjA10DU3sTRjgbMtLDgYeIuLswyAwMLAwMzSkpPBIjm_tCAnMy9dIT9NwTk_QKE8syRDwTffXyEtv0ghNS8jMS85NUUhozKlKD89NU8htSw_p7QkMz-Ph4E1LTGnOJUXSnMzyLq5hjh76BYVJ8cXFGXmJhZVxiNcZExYXhGffHxBSpoxAMmzQ7w</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>coupling of CoP with MoO for enhanced hydrogen evolution</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Jun ; Cheng, Hui ; Ren, Shiyu ; Zhang, Lili ; Ding, Liang-Xin ; Wang, Haihui</creator><creatorcontrib>Wang, Jun ; Cheng, Hui ; Ren, Shiyu ; Zhang, Lili ; Ding, Liang-Xin ; Wang, Haihui</creatorcontrib><description>The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting. In this work, we report on using molybdenum trioxide as an intermediary to
in situ
synthesize strongly coupled porous CoP/MoO
2
hybrid thin films for the HER. By virtue of modulating the H
2
O adsorption energy on the surface of CoP, together with the abundant and accessible active sites derived from the
in situ
formation of a porous structure, the as-prepared CoP/MoO
2
hybrid thin films exhibit an excellent HER catalytic performance, only requiring a small overpotential of 41 mV to support a current density of 20 mA cm
−2
, which is comparable to the catalytic performance of the Pt/C benchmark.
The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta03736b</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-08, Vol.8 (31), p.1618-1623</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Cheng, Hui</creatorcontrib><creatorcontrib>Ren, Shiyu</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Ding, Liang-Xin</creatorcontrib><creatorcontrib>Wang, Haihui</creatorcontrib><title>coupling of CoP with MoO for enhanced hydrogen evolution</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting. In this work, we report on using molybdenum trioxide as an intermediary to
in situ
synthesize strongly coupled porous CoP/MoO
2
hybrid thin films for the HER. By virtue of modulating the H
2
O adsorption energy on the surface of CoP, together with the abundant and accessible active sites derived from the
in situ
formation of a porous structure, the as-prepared CoP/MoO
2
hybrid thin films exhibit an excellent HER catalytic performance, only requiring a small overpotential of 41 mV to support a current density of 20 mA cm
−2
, which is comparable to the catalytic performance of the Pt/C benchmark.
The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYBAyNNAzNDC21E8xKEk0MDY3NktiYuA0MjA10DU3sTRjgbMtLDgYeIuLswyAwMLAwMzSkpPBIjm_tCAnMy9dIT9NwTk_QKE8syRDwTffXyEtv0ghNS8jMS85NUUhozKlKD89NU8htSw_p7QkMz-Ph4E1LTGnOJUXSnMzyLq5hjh76BYVJ8cXFGXmJhZVxiNcZExYXhGffHxBSpoxAMmzQ7w</recordid><startdate>20200811</startdate><enddate>20200811</enddate><creator>Wang, Jun</creator><creator>Cheng, Hui</creator><creator>Ren, Shiyu</creator><creator>Zhang, Lili</creator><creator>Ding, Liang-Xin</creator><creator>Wang, Haihui</creator><scope/></search><sort><creationdate>20200811</creationdate><title>coupling of CoP with MoO for enhanced hydrogen evolution</title><author>Wang, Jun ; Cheng, Hui ; Ren, Shiyu ; Zhang, Lili ; Ding, Liang-Xin ; Wang, Haihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d0ta03736b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Cheng, Hui</creatorcontrib><creatorcontrib>Ren, Shiyu</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Ding, Liang-Xin</creatorcontrib><creatorcontrib>Wang, Haihui</creatorcontrib><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jun</au><au>Cheng, Hui</au><au>Ren, Shiyu</au><au>Zhang, Lili</au><au>Ding, Liang-Xin</au><au>Wang, Haihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>coupling of CoP with MoO for enhanced hydrogen evolution</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-08-11</date><risdate>2020</risdate><volume>8</volume><issue>31</issue><spage>1618</spage><epage>1623</epage><pages>1618-1623</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting. In this work, we report on using molybdenum trioxide as an intermediary to
in situ
synthesize strongly coupled porous CoP/MoO
2
hybrid thin films for the HER. By virtue of modulating the H
2
O adsorption energy on the surface of CoP, together with the abundant and accessible active sites derived from the
in situ
formation of a porous structure, the as-prepared CoP/MoO
2
hybrid thin films exhibit an excellent HER catalytic performance, only requiring a small overpotential of 41 mV to support a current density of 20 mA cm
−2
, which is comparable to the catalytic performance of the Pt/C benchmark.
The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting.</abstract><doi>10.1039/d0ta03736b</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-08, Vol.8 (31), p.1618-1623 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_rsc_primary_d0ta03736b |
source | Royal Society Of Chemistry Journals 2008- |
title | coupling of CoP with MoO for enhanced hydrogen evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=coupling%20of%20CoP%20with%20MoO%20for%20enhanced%20hydrogen%20evolution&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Jun&rft.date=2020-08-11&rft.volume=8&rft.issue=31&rft.spage=1618&rft.epage=1623&rft.pages=1618-1623&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta03736b&rft_dat=%3Crsc%3Ed0ta03736b%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |