coupling of CoP with MoO for enhanced hydrogen evolution

The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting. In this work, we report on using molybdenum trioxide as an intermediary to in situ synthesize strongly coupled porous CoP/MoO 2 hybrid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-08, Vol.8 (31), p.1618-1623
Hauptverfasser: Wang, Jun, Cheng, Hui, Ren, Shiyu, Zhang, Lili, Ding, Liang-Xin, Wang, Haihui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1623
container_issue 31
container_start_page 1618
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Wang, Jun
Cheng, Hui
Ren, Shiyu
Zhang, Lili
Ding, Liang-Xin
Wang, Haihui
description The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting. In this work, we report on using molybdenum trioxide as an intermediary to in situ synthesize strongly coupled porous CoP/MoO 2 hybrid thin films for the HER. By virtue of modulating the H 2 O adsorption energy on the surface of CoP, together with the abundant and accessible active sites derived from the in situ formation of a porous structure, the as-prepared CoP/MoO 2 hybrid thin films exhibit an excellent HER catalytic performance, only requiring a small overpotential of 41 mV to support a current density of 20 mA cm −2 , which is comparable to the catalytic performance of the Pt/C benchmark. The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting.
doi_str_mv 10.1039/d0ta03736b
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d0ta03736b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d0ta03736b</sourcerecordid><originalsourceid>FETCH-rsc_primary_d0ta03736b3</originalsourceid><addsrcrecordid>eNpjYBAyNNAzNDC21E8xKEk0MDY3NktiYuA0MjA10DU3sTRjgbMtLDgYeIuLswyAwMLAwMzSkpPBIjm_tCAnMy9dIT9NwTk_QKE8syRDwTffXyEtv0ghNS8jMS85NUUhozKlKD89NU8htSw_p7QkMz-Ph4E1LTGnOJUXSnMzyLq5hjh76BYVJ8cXFGXmJhZVxiNcZExYXhGffHxBSpoxAMmzQ7w</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>coupling of CoP with MoO for enhanced hydrogen evolution</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Jun ; Cheng, Hui ; Ren, Shiyu ; Zhang, Lili ; Ding, Liang-Xin ; Wang, Haihui</creator><creatorcontrib>Wang, Jun ; Cheng, Hui ; Ren, Shiyu ; Zhang, Lili ; Ding, Liang-Xin ; Wang, Haihui</creatorcontrib><description>The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting. In this work, we report on using molybdenum trioxide as an intermediary to in situ synthesize strongly coupled porous CoP/MoO 2 hybrid thin films for the HER. By virtue of modulating the H 2 O adsorption energy on the surface of CoP, together with the abundant and accessible active sites derived from the in situ formation of a porous structure, the as-prepared CoP/MoO 2 hybrid thin films exhibit an excellent HER catalytic performance, only requiring a small overpotential of 41 mV to support a current density of 20 mA cm −2 , which is comparable to the catalytic performance of the Pt/C benchmark. The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta03736b</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-08, Vol.8 (31), p.1618-1623</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Cheng, Hui</creatorcontrib><creatorcontrib>Ren, Shiyu</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Ding, Liang-Xin</creatorcontrib><creatorcontrib>Wang, Haihui</creatorcontrib><title>coupling of CoP with MoO for enhanced hydrogen evolution</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting. In this work, we report on using molybdenum trioxide as an intermediary to in situ synthesize strongly coupled porous CoP/MoO 2 hybrid thin films for the HER. By virtue of modulating the H 2 O adsorption energy on the surface of CoP, together with the abundant and accessible active sites derived from the in situ formation of a porous structure, the as-prepared CoP/MoO 2 hybrid thin films exhibit an excellent HER catalytic performance, only requiring a small overpotential of 41 mV to support a current density of 20 mA cm −2 , which is comparable to the catalytic performance of the Pt/C benchmark. The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYBAyNNAzNDC21E8xKEk0MDY3NktiYuA0MjA10DU3sTRjgbMtLDgYeIuLswyAwMLAwMzSkpPBIjm_tCAnMy9dIT9NwTk_QKE8syRDwTffXyEtv0ghNS8jMS85NUUhozKlKD89NU8htSw_p7QkMz-Ph4E1LTGnOJUXSnMzyLq5hjh76BYVJ8cXFGXmJhZVxiNcZExYXhGffHxBSpoxAMmzQ7w</recordid><startdate>20200811</startdate><enddate>20200811</enddate><creator>Wang, Jun</creator><creator>Cheng, Hui</creator><creator>Ren, Shiyu</creator><creator>Zhang, Lili</creator><creator>Ding, Liang-Xin</creator><creator>Wang, Haihui</creator><scope/></search><sort><creationdate>20200811</creationdate><title>coupling of CoP with MoO for enhanced hydrogen evolution</title><author>Wang, Jun ; Cheng, Hui ; Ren, Shiyu ; Zhang, Lili ; Ding, Liang-Xin ; Wang, Haihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d0ta03736b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Cheng, Hui</creatorcontrib><creatorcontrib>Ren, Shiyu</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Ding, Liang-Xin</creatorcontrib><creatorcontrib>Wang, Haihui</creatorcontrib><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jun</au><au>Cheng, Hui</au><au>Ren, Shiyu</au><au>Zhang, Lili</au><au>Ding, Liang-Xin</au><au>Wang, Haihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>coupling of CoP with MoO for enhanced hydrogen evolution</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-08-11</date><risdate>2020</risdate><volume>8</volume><issue>31</issue><spage>1618</spage><epage>1623</epage><pages>1618-1623</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting. In this work, we report on using molybdenum trioxide as an intermediary to in situ synthesize strongly coupled porous CoP/MoO 2 hybrid thin films for the HER. By virtue of modulating the H 2 O adsorption energy on the surface of CoP, together with the abundant and accessible active sites derived from the in situ formation of a porous structure, the as-prepared CoP/MoO 2 hybrid thin films exhibit an excellent HER catalytic performance, only requiring a small overpotential of 41 mV to support a current density of 20 mA cm −2 , which is comparable to the catalytic performance of the Pt/C benchmark. The development of highly active and stable catalysts based on low-cost materials for the hydrogen evolution reaction (HER) is crucial to catalytic water splitting.</abstract><doi>10.1039/d0ta03736b</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-08, Vol.8 (31), p.1618-1623
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_d0ta03736b
source Royal Society Of Chemistry Journals 2008-
title coupling of CoP with MoO for enhanced hydrogen evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=coupling%20of%20CoP%20with%20MoO%20for%20enhanced%20hydrogen%20evolution&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Jun&rft.date=2020-08-11&rft.volume=8&rft.issue=31&rft.spage=1618&rft.epage=1623&rft.pages=1618-1623&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta03736b&rft_dat=%3Crsc%3Ed0ta03736b%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true