Accelerated trypsin autolysis by affinity polymer templates
Self-cleavage of proteins is an important natural process that is difficult to control externally. Recently a new mechanism for the accelerated autolysis of trypsin was discovered involving polyanionic template polymers; however it relies on unspecific interactions and is inactive at elevated salt l...
Gespeichert in:
Veröffentlicht in: | RSC advances 2020-08, Vol.1 (48), p.28711-28719 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28719 |
---|---|
container_issue | 48 |
container_start_page | 28711 |
container_title | RSC advances |
container_volume | 1 |
creator | Smolin, Daniel Tötsch, Niklas Grad, Jean-Noël Linders, Jürgen Kaschani, Farnusch Kaiser, Markus Kirsch, Michael Hoffmann, Daniel Schrader, Thomas |
description | Self-cleavage of proteins is an important natural process that is difficult to control externally. Recently a new mechanism for the accelerated autolysis of trypsin was discovered involving polyanionic template polymers; however it relies on unspecific interactions and is inactive at elevated salt loads. We have now developed affinity copolymers that bind to the surface of proteases by specific recognition of selected amino acid residues. These are highly efficient trypsin inhibitors with low nanomolar IC
50
levels and operate at physiological conditions. In this manuscript we show how these affinity copolymers employ the new mechanism of polymer-assisted self-digest (PAS) and act as a template for multiple protease molecules. Their elevated local concentration leads to accelerated autolysis on the accessible surface area and shields complexed areas. The resulting extremely efficient trypsin inhibition was studied by SDS-PAGE, gel filtration, CD, CZE and ESI-MS. We also present a simple theoretical model that simulates most experimental findings and confirms them as a result of multivalency and efficient reversible templating. For the first time, mass spectrometric kinetic analysis of the released peptide fragments gives deeper insight into the underlying mechanism and reveals that polymer-bound trypsin cleaves much more rapidly with low specificity at predominantly uncomplexed surface areas.
Affinity copolymers specifically recognize the trypsin surface and act as templates for multiple protease molecules, leading to drastically accelerated autolysis - an unusual way for highly efficient enzyme inhibition at physiological conditions. |
doi_str_mv | 10.1039/d0ra05827k |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0ra05827k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661082465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-cab1cd06b41536092a40636cd76d89f169e01de1501514368b61fac6f9d7522c3</originalsourceid><addsrcrecordid>eNp9kc2LFDEQxYOsOMM4F-9KL15E6LWSTqq7EYRhdnUXBwTRc0gnae2xv0zSQv_3G51xHD1Ylyrq_XhU8Qh5QuGKQla-MuAUiILl3x6QJQOOKQMsL87mBVl7v4dYKChD-ogsMiEYAM-X5PVGa9tap4I1SXDz6Js-UVMY2tk3PqnmRNV10zdhTsa466xLgu3GNvL-MXlYq9bb9bGvyOe3N5-2t-nuw7u77WaXai54SLWqqDaAFaciQyiZ4oAZapOjKcqaYmmBGksFUEF5hkWFtFYa69LkgjGdrcibg-84VZ012vbBqVaOrumUm-WgGvm30jdf5ZfhhyxBiCLn0eDF0cAN3yfrg-waH99uVW-HyUuGSKFgHEVEn_-D7ofJ9fE9yXgGSBGxiNTLA6Xd4L2z9ekYCvJnLPIaPm5-xfI-ws_Ozz-hv0OIwNMD4Lw-qX9yjfrl_3Q5mjq7B5lSnNo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430616668</pqid></control><display><type>article</type><title>Accelerated trypsin autolysis by affinity polymer templates</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Smolin, Daniel ; Tötsch, Niklas ; Grad, Jean-Noël ; Linders, Jürgen ; Kaschani, Farnusch ; Kaiser, Markus ; Kirsch, Michael ; Hoffmann, Daniel ; Schrader, Thomas</creator><creatorcontrib>Smolin, Daniel ; Tötsch, Niklas ; Grad, Jean-Noël ; Linders, Jürgen ; Kaschani, Farnusch ; Kaiser, Markus ; Kirsch, Michael ; Hoffmann, Daniel ; Schrader, Thomas</creatorcontrib><description>Self-cleavage of proteins is an important natural process that is difficult to control externally. Recently a new mechanism for the accelerated autolysis of trypsin was discovered involving polyanionic template polymers; however it relies on unspecific interactions and is inactive at elevated salt loads. We have now developed affinity copolymers that bind to the surface of proteases by specific recognition of selected amino acid residues. These are highly efficient trypsin inhibitors with low nanomolar IC
50
levels and operate at physiological conditions. In this manuscript we show how these affinity copolymers employ the new mechanism of polymer-assisted self-digest (PAS) and act as a template for multiple protease molecules. Their elevated local concentration leads to accelerated autolysis on the accessible surface area and shields complexed areas. The resulting extremely efficient trypsin inhibition was studied by SDS-PAGE, gel filtration, CD, CZE and ESI-MS. We also present a simple theoretical model that simulates most experimental findings and confirms them as a result of multivalency and efficient reversible templating. For the first time, mass spectrometric kinetic analysis of the released peptide fragments gives deeper insight into the underlying mechanism and reveals that polymer-bound trypsin cleaves much more rapidly with low specificity at predominantly uncomplexed surface areas.
Affinity copolymers specifically recognize the trypsin surface and act as templates for multiple protease molecules, leading to drastically accelerated autolysis - an unusual way for highly efficient enzyme inhibition at physiological conditions.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra05827k</identifier><identifier>PMID: 35520047</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Affinity ; Chemistry ; Computer simulation ; Copolymers ; Extreme values ; Filtration ; Fluorescence ; Gel filtration ; NMR ; Nuclear magnetic resonance ; Polymers ; Spectrometry ; Trypsin inhibitors</subject><ispartof>RSC advances, 2020-08, Vol.1 (48), p.28711-28719</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-cab1cd06b41536092a40636cd76d89f169e01de1501514368b61fac6f9d7522c3</citedby><cites>FETCH-LOGICAL-c454t-cab1cd06b41536092a40636cd76d89f169e01de1501514368b61fac6f9d7522c3</cites><orcidid>0000-0003-2973-7869 ; 0000-0002-5821-4912 ; 0000-0002-7003-6362 ; 0000-0001-7656-1160 ; 0000-0002-6540-8520 ; 0000-0002-0477-5482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055874/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055874/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35520047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smolin, Daniel</creatorcontrib><creatorcontrib>Tötsch, Niklas</creatorcontrib><creatorcontrib>Grad, Jean-Noël</creatorcontrib><creatorcontrib>Linders, Jürgen</creatorcontrib><creatorcontrib>Kaschani, Farnusch</creatorcontrib><creatorcontrib>Kaiser, Markus</creatorcontrib><creatorcontrib>Kirsch, Michael</creatorcontrib><creatorcontrib>Hoffmann, Daniel</creatorcontrib><creatorcontrib>Schrader, Thomas</creatorcontrib><title>Accelerated trypsin autolysis by affinity polymer templates</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Self-cleavage of proteins is an important natural process that is difficult to control externally. Recently a new mechanism for the accelerated autolysis of trypsin was discovered involving polyanionic template polymers; however it relies on unspecific interactions and is inactive at elevated salt loads. We have now developed affinity copolymers that bind to the surface of proteases by specific recognition of selected amino acid residues. These are highly efficient trypsin inhibitors with low nanomolar IC
50
levels and operate at physiological conditions. In this manuscript we show how these affinity copolymers employ the new mechanism of polymer-assisted self-digest (PAS) and act as a template for multiple protease molecules. Their elevated local concentration leads to accelerated autolysis on the accessible surface area and shields complexed areas. The resulting extremely efficient trypsin inhibition was studied by SDS-PAGE, gel filtration, CD, CZE and ESI-MS. We also present a simple theoretical model that simulates most experimental findings and confirms them as a result of multivalency and efficient reversible templating. For the first time, mass spectrometric kinetic analysis of the released peptide fragments gives deeper insight into the underlying mechanism and reveals that polymer-bound trypsin cleaves much more rapidly with low specificity at predominantly uncomplexed surface areas.
Affinity copolymers specifically recognize the trypsin surface and act as templates for multiple protease molecules, leading to drastically accelerated autolysis - an unusual way for highly efficient enzyme inhibition at physiological conditions.</description><subject>Affinity</subject><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Copolymers</subject><subject>Extreme values</subject><subject>Filtration</subject><subject>Fluorescence</subject><subject>Gel filtration</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Polymers</subject><subject>Spectrometry</subject><subject>Trypsin inhibitors</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc2LFDEQxYOsOMM4F-9KL15E6LWSTqq7EYRhdnUXBwTRc0gnae2xv0zSQv_3G51xHD1Ylyrq_XhU8Qh5QuGKQla-MuAUiILl3x6QJQOOKQMsL87mBVl7v4dYKChD-ogsMiEYAM-X5PVGa9tap4I1SXDz6Js-UVMY2tk3PqnmRNV10zdhTsa466xLgu3GNvL-MXlYq9bb9bGvyOe3N5-2t-nuw7u77WaXai54SLWqqDaAFaciQyiZ4oAZapOjKcqaYmmBGksFUEF5hkWFtFYa69LkgjGdrcibg-84VZ012vbBqVaOrumUm-WgGvm30jdf5ZfhhyxBiCLn0eDF0cAN3yfrg-waH99uVW-HyUuGSKFgHEVEn_-D7ofJ9fE9yXgGSBGxiNTLA6Xd4L2z9ekYCvJnLPIaPm5-xfI-ws_Ozz-hv0OIwNMD4Lw-qX9yjfrl_3Q5mjq7B5lSnNo</recordid><startdate>20200804</startdate><enddate>20200804</enddate><creator>Smolin, Daniel</creator><creator>Tötsch, Niklas</creator><creator>Grad, Jean-Noël</creator><creator>Linders, Jürgen</creator><creator>Kaschani, Farnusch</creator><creator>Kaiser, Markus</creator><creator>Kirsch, Michael</creator><creator>Hoffmann, Daniel</creator><creator>Schrader, Thomas</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2973-7869</orcidid><orcidid>https://orcid.org/0000-0002-5821-4912</orcidid><orcidid>https://orcid.org/0000-0002-7003-6362</orcidid><orcidid>https://orcid.org/0000-0001-7656-1160</orcidid><orcidid>https://orcid.org/0000-0002-6540-8520</orcidid><orcidid>https://orcid.org/0000-0002-0477-5482</orcidid></search><sort><creationdate>20200804</creationdate><title>Accelerated trypsin autolysis by affinity polymer templates</title><author>Smolin, Daniel ; Tötsch, Niklas ; Grad, Jean-Noël ; Linders, Jürgen ; Kaschani, Farnusch ; Kaiser, Markus ; Kirsch, Michael ; Hoffmann, Daniel ; Schrader, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-cab1cd06b41536092a40636cd76d89f169e01de1501514368b61fac6f9d7522c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Affinity</topic><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Copolymers</topic><topic>Extreme values</topic><topic>Filtration</topic><topic>Fluorescence</topic><topic>Gel filtration</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Polymers</topic><topic>Spectrometry</topic><topic>Trypsin inhibitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smolin, Daniel</creatorcontrib><creatorcontrib>Tötsch, Niklas</creatorcontrib><creatorcontrib>Grad, Jean-Noël</creatorcontrib><creatorcontrib>Linders, Jürgen</creatorcontrib><creatorcontrib>Kaschani, Farnusch</creatorcontrib><creatorcontrib>Kaiser, Markus</creatorcontrib><creatorcontrib>Kirsch, Michael</creatorcontrib><creatorcontrib>Hoffmann, Daniel</creatorcontrib><creatorcontrib>Schrader, Thomas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smolin, Daniel</au><au>Tötsch, Niklas</au><au>Grad, Jean-Noël</au><au>Linders, Jürgen</au><au>Kaschani, Farnusch</au><au>Kaiser, Markus</au><au>Kirsch, Michael</au><au>Hoffmann, Daniel</au><au>Schrader, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated trypsin autolysis by affinity polymer templates</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-08-04</date><risdate>2020</risdate><volume>1</volume><issue>48</issue><spage>28711</spage><epage>28719</epage><pages>28711-28719</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Self-cleavage of proteins is an important natural process that is difficult to control externally. Recently a new mechanism for the accelerated autolysis of trypsin was discovered involving polyanionic template polymers; however it relies on unspecific interactions and is inactive at elevated salt loads. We have now developed affinity copolymers that bind to the surface of proteases by specific recognition of selected amino acid residues. These are highly efficient trypsin inhibitors with low nanomolar IC
50
levels and operate at physiological conditions. In this manuscript we show how these affinity copolymers employ the new mechanism of polymer-assisted self-digest (PAS) and act as a template for multiple protease molecules. Their elevated local concentration leads to accelerated autolysis on the accessible surface area and shields complexed areas. The resulting extremely efficient trypsin inhibition was studied by SDS-PAGE, gel filtration, CD, CZE and ESI-MS. We also present a simple theoretical model that simulates most experimental findings and confirms them as a result of multivalency and efficient reversible templating. For the first time, mass spectrometric kinetic analysis of the released peptide fragments gives deeper insight into the underlying mechanism and reveals that polymer-bound trypsin cleaves much more rapidly with low specificity at predominantly uncomplexed surface areas.
Affinity copolymers specifically recognize the trypsin surface and act as templates for multiple protease molecules, leading to drastically accelerated autolysis - an unusual way for highly efficient enzyme inhibition at physiological conditions.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35520047</pmid><doi>10.1039/d0ra05827k</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2973-7869</orcidid><orcidid>https://orcid.org/0000-0002-5821-4912</orcidid><orcidid>https://orcid.org/0000-0002-7003-6362</orcidid><orcidid>https://orcid.org/0000-0001-7656-1160</orcidid><orcidid>https://orcid.org/0000-0002-6540-8520</orcidid><orcidid>https://orcid.org/0000-0002-0477-5482</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2020-08, Vol.1 (48), p.28711-28719 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_rsc_primary_d0ra05827k |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Affinity Chemistry Computer simulation Copolymers Extreme values Filtration Fluorescence Gel filtration NMR Nuclear magnetic resonance Polymers Spectrometry Trypsin inhibitors |
title | Accelerated trypsin autolysis by affinity polymer templates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A29%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20trypsin%20autolysis%20by%20affinity%20polymer%20templates&rft.jtitle=RSC%20advances&rft.au=Smolin,%20Daniel&rft.date=2020-08-04&rft.volume=1&rft.issue=48&rft.spage=28711&rft.epage=28719&rft.pages=28711-28719&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra05827k&rft_dat=%3Cproquest_rsc_p%3E2661082465%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430616668&rft_id=info:pmid/35520047&rfr_iscdi=true |