Accelerated trypsin autolysis by affinity polymer templates

Self-cleavage of proteins is an important natural process that is difficult to control externally. Recently a new mechanism for the accelerated autolysis of trypsin was discovered involving polyanionic template polymers; however it relies on unspecific interactions and is inactive at elevated salt l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2020-08, Vol.1 (48), p.28711-28719
Hauptverfasser: Smolin, Daniel, Tötsch, Niklas, Grad, Jean-Noël, Linders, Jürgen, Kaschani, Farnusch, Kaiser, Markus, Kirsch, Michael, Hoffmann, Daniel, Schrader, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28719
container_issue 48
container_start_page 28711
container_title RSC advances
container_volume 1
creator Smolin, Daniel
Tötsch, Niklas
Grad, Jean-Noël
Linders, Jürgen
Kaschani, Farnusch
Kaiser, Markus
Kirsch, Michael
Hoffmann, Daniel
Schrader, Thomas
description Self-cleavage of proteins is an important natural process that is difficult to control externally. Recently a new mechanism for the accelerated autolysis of trypsin was discovered involving polyanionic template polymers; however it relies on unspecific interactions and is inactive at elevated salt loads. We have now developed affinity copolymers that bind to the surface of proteases by specific recognition of selected amino acid residues. These are highly efficient trypsin inhibitors with low nanomolar IC 50 levels and operate at physiological conditions. In this manuscript we show how these affinity copolymers employ the new mechanism of polymer-assisted self-digest (PAS) and act as a template for multiple protease molecules. Their elevated local concentration leads to accelerated autolysis on the accessible surface area and shields complexed areas. The resulting extremely efficient trypsin inhibition was studied by SDS-PAGE, gel filtration, CD, CZE and ESI-MS. We also present a simple theoretical model that simulates most experimental findings and confirms them as a result of multivalency and efficient reversible templating. For the first time, mass spectrometric kinetic analysis of the released peptide fragments gives deeper insight into the underlying mechanism and reveals that polymer-bound trypsin cleaves much more rapidly with low specificity at predominantly uncomplexed surface areas. Affinity copolymers specifically recognize the trypsin surface and act as templates for multiple protease molecules, leading to drastically accelerated autolysis - an unusual way for highly efficient enzyme inhibition at physiological conditions.
doi_str_mv 10.1039/d0ra05827k
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0ra05827k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661082465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-cab1cd06b41536092a40636cd76d89f169e01de1501514368b61fac6f9d7522c3</originalsourceid><addsrcrecordid>eNp9kc2LFDEQxYOsOMM4F-9KL15E6LWSTqq7EYRhdnUXBwTRc0gnae2xv0zSQv_3G51xHD1Ylyrq_XhU8Qh5QuGKQla-MuAUiILl3x6QJQOOKQMsL87mBVl7v4dYKChD-ogsMiEYAM-X5PVGa9tap4I1SXDz6Js-UVMY2tk3PqnmRNV10zdhTsa466xLgu3GNvL-MXlYq9bb9bGvyOe3N5-2t-nuw7u77WaXai54SLWqqDaAFaciQyiZ4oAZapOjKcqaYmmBGksFUEF5hkWFtFYa69LkgjGdrcibg-84VZ012vbBqVaOrumUm-WgGvm30jdf5ZfhhyxBiCLn0eDF0cAN3yfrg-waH99uVW-HyUuGSKFgHEVEn_-D7ofJ9fE9yXgGSBGxiNTLA6Xd4L2z9ekYCvJnLPIaPm5-xfI-ws_Ozz-hv0OIwNMD4Lw-qX9yjfrl_3Q5mjq7B5lSnNo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430616668</pqid></control><display><type>article</type><title>Accelerated trypsin autolysis by affinity polymer templates</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Smolin, Daniel ; Tötsch, Niklas ; Grad, Jean-Noël ; Linders, Jürgen ; Kaschani, Farnusch ; Kaiser, Markus ; Kirsch, Michael ; Hoffmann, Daniel ; Schrader, Thomas</creator><creatorcontrib>Smolin, Daniel ; Tötsch, Niklas ; Grad, Jean-Noël ; Linders, Jürgen ; Kaschani, Farnusch ; Kaiser, Markus ; Kirsch, Michael ; Hoffmann, Daniel ; Schrader, Thomas</creatorcontrib><description>Self-cleavage of proteins is an important natural process that is difficult to control externally. Recently a new mechanism for the accelerated autolysis of trypsin was discovered involving polyanionic template polymers; however it relies on unspecific interactions and is inactive at elevated salt loads. We have now developed affinity copolymers that bind to the surface of proteases by specific recognition of selected amino acid residues. These are highly efficient trypsin inhibitors with low nanomolar IC 50 levels and operate at physiological conditions. In this manuscript we show how these affinity copolymers employ the new mechanism of polymer-assisted self-digest (PAS) and act as a template for multiple protease molecules. Their elevated local concentration leads to accelerated autolysis on the accessible surface area and shields complexed areas. The resulting extremely efficient trypsin inhibition was studied by SDS-PAGE, gel filtration, CD, CZE and ESI-MS. We also present a simple theoretical model that simulates most experimental findings and confirms them as a result of multivalency and efficient reversible templating. For the first time, mass spectrometric kinetic analysis of the released peptide fragments gives deeper insight into the underlying mechanism and reveals that polymer-bound trypsin cleaves much more rapidly with low specificity at predominantly uncomplexed surface areas. Affinity copolymers specifically recognize the trypsin surface and act as templates for multiple protease molecules, leading to drastically accelerated autolysis - an unusual way for highly efficient enzyme inhibition at physiological conditions.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra05827k</identifier><identifier>PMID: 35520047</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Affinity ; Chemistry ; Computer simulation ; Copolymers ; Extreme values ; Filtration ; Fluorescence ; Gel filtration ; NMR ; Nuclear magnetic resonance ; Polymers ; Spectrometry ; Trypsin inhibitors</subject><ispartof>RSC advances, 2020-08, Vol.1 (48), p.28711-28719</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-cab1cd06b41536092a40636cd76d89f169e01de1501514368b61fac6f9d7522c3</citedby><cites>FETCH-LOGICAL-c454t-cab1cd06b41536092a40636cd76d89f169e01de1501514368b61fac6f9d7522c3</cites><orcidid>0000-0003-2973-7869 ; 0000-0002-5821-4912 ; 0000-0002-7003-6362 ; 0000-0001-7656-1160 ; 0000-0002-6540-8520 ; 0000-0002-0477-5482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055874/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055874/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35520047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smolin, Daniel</creatorcontrib><creatorcontrib>Tötsch, Niklas</creatorcontrib><creatorcontrib>Grad, Jean-Noël</creatorcontrib><creatorcontrib>Linders, Jürgen</creatorcontrib><creatorcontrib>Kaschani, Farnusch</creatorcontrib><creatorcontrib>Kaiser, Markus</creatorcontrib><creatorcontrib>Kirsch, Michael</creatorcontrib><creatorcontrib>Hoffmann, Daniel</creatorcontrib><creatorcontrib>Schrader, Thomas</creatorcontrib><title>Accelerated trypsin autolysis by affinity polymer templates</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Self-cleavage of proteins is an important natural process that is difficult to control externally. Recently a new mechanism for the accelerated autolysis of trypsin was discovered involving polyanionic template polymers; however it relies on unspecific interactions and is inactive at elevated salt loads. We have now developed affinity copolymers that bind to the surface of proteases by specific recognition of selected amino acid residues. These are highly efficient trypsin inhibitors with low nanomolar IC 50 levels and operate at physiological conditions. In this manuscript we show how these affinity copolymers employ the new mechanism of polymer-assisted self-digest (PAS) and act as a template for multiple protease molecules. Their elevated local concentration leads to accelerated autolysis on the accessible surface area and shields complexed areas. The resulting extremely efficient trypsin inhibition was studied by SDS-PAGE, gel filtration, CD, CZE and ESI-MS. We also present a simple theoretical model that simulates most experimental findings and confirms them as a result of multivalency and efficient reversible templating. For the first time, mass spectrometric kinetic analysis of the released peptide fragments gives deeper insight into the underlying mechanism and reveals that polymer-bound trypsin cleaves much more rapidly with low specificity at predominantly uncomplexed surface areas. Affinity copolymers specifically recognize the trypsin surface and act as templates for multiple protease molecules, leading to drastically accelerated autolysis - an unusual way for highly efficient enzyme inhibition at physiological conditions.</description><subject>Affinity</subject><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Copolymers</subject><subject>Extreme values</subject><subject>Filtration</subject><subject>Fluorescence</subject><subject>Gel filtration</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Polymers</subject><subject>Spectrometry</subject><subject>Trypsin inhibitors</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc2LFDEQxYOsOMM4F-9KL15E6LWSTqq7EYRhdnUXBwTRc0gnae2xv0zSQv_3G51xHD1Ylyrq_XhU8Qh5QuGKQla-MuAUiILl3x6QJQOOKQMsL87mBVl7v4dYKChD-ogsMiEYAM-X5PVGa9tap4I1SXDz6Js-UVMY2tk3PqnmRNV10zdhTsa466xLgu3GNvL-MXlYq9bb9bGvyOe3N5-2t-nuw7u77WaXai54SLWqqDaAFaciQyiZ4oAZapOjKcqaYmmBGksFUEF5hkWFtFYa69LkgjGdrcibg-84VZ012vbBqVaOrumUm-WgGvm30jdf5ZfhhyxBiCLn0eDF0cAN3yfrg-waH99uVW-HyUuGSKFgHEVEn_-D7ofJ9fE9yXgGSBGxiNTLA6Xd4L2z9ekYCvJnLPIaPm5-xfI-ws_Ozz-hv0OIwNMD4Lw-qX9yjfrl_3Q5mjq7B5lSnNo</recordid><startdate>20200804</startdate><enddate>20200804</enddate><creator>Smolin, Daniel</creator><creator>Tötsch, Niklas</creator><creator>Grad, Jean-Noël</creator><creator>Linders, Jürgen</creator><creator>Kaschani, Farnusch</creator><creator>Kaiser, Markus</creator><creator>Kirsch, Michael</creator><creator>Hoffmann, Daniel</creator><creator>Schrader, Thomas</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2973-7869</orcidid><orcidid>https://orcid.org/0000-0002-5821-4912</orcidid><orcidid>https://orcid.org/0000-0002-7003-6362</orcidid><orcidid>https://orcid.org/0000-0001-7656-1160</orcidid><orcidid>https://orcid.org/0000-0002-6540-8520</orcidid><orcidid>https://orcid.org/0000-0002-0477-5482</orcidid></search><sort><creationdate>20200804</creationdate><title>Accelerated trypsin autolysis by affinity polymer templates</title><author>Smolin, Daniel ; Tötsch, Niklas ; Grad, Jean-Noël ; Linders, Jürgen ; Kaschani, Farnusch ; Kaiser, Markus ; Kirsch, Michael ; Hoffmann, Daniel ; Schrader, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-cab1cd06b41536092a40636cd76d89f169e01de1501514368b61fac6f9d7522c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Affinity</topic><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Copolymers</topic><topic>Extreme values</topic><topic>Filtration</topic><topic>Fluorescence</topic><topic>Gel filtration</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Polymers</topic><topic>Spectrometry</topic><topic>Trypsin inhibitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smolin, Daniel</creatorcontrib><creatorcontrib>Tötsch, Niklas</creatorcontrib><creatorcontrib>Grad, Jean-Noël</creatorcontrib><creatorcontrib>Linders, Jürgen</creatorcontrib><creatorcontrib>Kaschani, Farnusch</creatorcontrib><creatorcontrib>Kaiser, Markus</creatorcontrib><creatorcontrib>Kirsch, Michael</creatorcontrib><creatorcontrib>Hoffmann, Daniel</creatorcontrib><creatorcontrib>Schrader, Thomas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smolin, Daniel</au><au>Tötsch, Niklas</au><au>Grad, Jean-Noël</au><au>Linders, Jürgen</au><au>Kaschani, Farnusch</au><au>Kaiser, Markus</au><au>Kirsch, Michael</au><au>Hoffmann, Daniel</au><au>Schrader, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated trypsin autolysis by affinity polymer templates</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-08-04</date><risdate>2020</risdate><volume>1</volume><issue>48</issue><spage>28711</spage><epage>28719</epage><pages>28711-28719</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Self-cleavage of proteins is an important natural process that is difficult to control externally. Recently a new mechanism for the accelerated autolysis of trypsin was discovered involving polyanionic template polymers; however it relies on unspecific interactions and is inactive at elevated salt loads. We have now developed affinity copolymers that bind to the surface of proteases by specific recognition of selected amino acid residues. These are highly efficient trypsin inhibitors with low nanomolar IC 50 levels and operate at physiological conditions. In this manuscript we show how these affinity copolymers employ the new mechanism of polymer-assisted self-digest (PAS) and act as a template for multiple protease molecules. Their elevated local concentration leads to accelerated autolysis on the accessible surface area and shields complexed areas. The resulting extremely efficient trypsin inhibition was studied by SDS-PAGE, gel filtration, CD, CZE and ESI-MS. We also present a simple theoretical model that simulates most experimental findings and confirms them as a result of multivalency and efficient reversible templating. For the first time, mass spectrometric kinetic analysis of the released peptide fragments gives deeper insight into the underlying mechanism and reveals that polymer-bound trypsin cleaves much more rapidly with low specificity at predominantly uncomplexed surface areas. Affinity copolymers specifically recognize the trypsin surface and act as templates for multiple protease molecules, leading to drastically accelerated autolysis - an unusual way for highly efficient enzyme inhibition at physiological conditions.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35520047</pmid><doi>10.1039/d0ra05827k</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2973-7869</orcidid><orcidid>https://orcid.org/0000-0002-5821-4912</orcidid><orcidid>https://orcid.org/0000-0002-7003-6362</orcidid><orcidid>https://orcid.org/0000-0001-7656-1160</orcidid><orcidid>https://orcid.org/0000-0002-6540-8520</orcidid><orcidid>https://orcid.org/0000-0002-0477-5482</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2020-08, Vol.1 (48), p.28711-28719
issn 2046-2069
2046-2069
language eng
recordid cdi_rsc_primary_d0ra05827k
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Affinity
Chemistry
Computer simulation
Copolymers
Extreme values
Filtration
Fluorescence
Gel filtration
NMR
Nuclear magnetic resonance
Polymers
Spectrometry
Trypsin inhibitors
title Accelerated trypsin autolysis by affinity polymer templates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A29%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20trypsin%20autolysis%20by%20affinity%20polymer%20templates&rft.jtitle=RSC%20advances&rft.au=Smolin,%20Daniel&rft.date=2020-08-04&rft.volume=1&rft.issue=48&rft.spage=28711&rft.epage=28719&rft.pages=28711-28719&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra05827k&rft_dat=%3Cproquest_rsc_p%3E2661082465%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430616668&rft_id=info:pmid/35520047&rfr_iscdi=true