Nanophotonic structures with optical surface modes for tunable spin current generation

We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation via the spin Seebeck and inverse spin Hall effects. It has been experimentally demonstrated that optical surface modes localized at the PC surface covered by ferr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2021-03, Vol.13 (11), p.5791-5799
Hauptverfasser: Shilina, P. V, Ignatyeva, D. O, Kapralov, P. O, Sekatskii, S. K, Nur-E-Alam, M, Vasiliev, M, Alameh, K, Achanta, Venu Gopal, Song, Y, Hamidi, S. M, Zvezdin, A. K, Belotelov, V. I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5799
container_issue 11
container_start_page 5791
container_title Nanoscale
container_volume 13
creator Shilina, P. V
Ignatyeva, D. O
Kapralov, P. O
Sekatskii, S. K
Nur-E-Alam, M
Vasiliev, M
Alameh, K
Achanta, Venu Gopal
Song, Y
Hamidi, S. M
Zvezdin, A. K
Belotelov, V. I
description We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation via the spin Seebeck and inverse spin Hall effects. It has been experimentally demonstrated that optical surface modes localized at the PC surface covered by ferromagnetic layer and materials with giant spin-orbit coupling (SOC) notably increase the efficiency of the optically-induced spin current generation, and provides its tunability by modifying the light wavelength or angle of incidence. Up to 100% of the incident light power can be transferred to heat within the SOC layer and, therefore, to the spin current. Importantly, the high efficiency becomes accessible even for ultra-thin SOC layers. Moreover, the surface patterning of the PC-based spintronic nanostructure allows for the local generation of spin currents at the pattern scales rather than the diameter of the laser beam. We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation via the spin Seebeck and inverse spin Hall effects.
doi_str_mv 10.1039/d0nr08692d
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0nr08692d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2504686113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-5fa59bb0ef3598ba0d97bd50368e99a9024f4b8fc77743462fa2ae710b32b733</originalsourceid><addsrcrecordid>eNpFkUtLAzEUhYMoVqsb90rAnVC9k2QeWUrrC0oFKW6HJJPYKW0y5oH4753aWlf3wvk493IOQhcZ3GZA-V0D1kNVcNIcoBMCDEaUluRwvxdsgE5DWAIUnBb0GA16HRiF7AS9z4R13cJFZ1uFQ_RJxeR1wF9tXGDXxVaJFQ7JG6E0Xruml4zzOCYr5Erj0LUWq-S9thF_aKu9iK2zZ-jIiFXQ57s5RPPHh_n4eTR9fXoZ309Hqn8hjnIjci4laENzXkkBDS9lkwMtKs254ECYYbIyqixLRllBjCBClxlISmRJ6RBdb2077z6TDrFeuuRtf7EmObCiKrJsQ91sKeVdCF6buvPtWvjvOoN6k2A9gdnbb4KTHr7aWSa51s0e_YusBy63gA9qr_5XQH8ApIR2Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504686113</pqid></control><display><type>article</type><title>Nanophotonic structures with optical surface modes for tunable spin current generation</title><source>Royal Society of Chemistry</source><creator>Shilina, P. V ; Ignatyeva, D. O ; Kapralov, P. O ; Sekatskii, S. K ; Nur-E-Alam, M ; Vasiliev, M ; Alameh, K ; Achanta, Venu Gopal ; Song, Y ; Hamidi, S. M ; Zvezdin, A. K ; Belotelov, V. I</creator><creatorcontrib>Shilina, P. V ; Ignatyeva, D. O ; Kapralov, P. O ; Sekatskii, S. K ; Nur-E-Alam, M ; Vasiliev, M ; Alameh, K ; Achanta, Venu Gopal ; Song, Y ; Hamidi, S. M ; Zvezdin, A. K ; Belotelov, V. I</creatorcontrib><description>We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation via the spin Seebeck and inverse spin Hall effects. It has been experimentally demonstrated that optical surface modes localized at the PC surface covered by ferromagnetic layer and materials with giant spin-orbit coupling (SOC) notably increase the efficiency of the optically-induced spin current generation, and provides its tunability by modifying the light wavelength or angle of incidence. Up to 100% of the incident light power can be transferred to heat within the SOC layer and, therefore, to the spin current. Importantly, the high efficiency becomes accessible even for ultra-thin SOC layers. Moreover, the surface patterning of the PC-based spintronic nanostructure allows for the local generation of spin currents at the pattern scales rather than the diameter of the laser beam. We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation via the spin Seebeck and inverse spin Hall effects.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr08692d</identifier><identifier>PMID: 33704301</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Electron spin ; Ferromagnetic materials ; Incidence angle ; Incident light ; Laser beams ; Nanostructure ; Patterning ; Personal computers ; Photonic crystals ; Spin-orbit interactions ; Spintronics ; Thin films</subject><ispartof>Nanoscale, 2021-03, Vol.13 (11), p.5791-5799</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-5fa59bb0ef3598ba0d97bd50368e99a9024f4b8fc77743462fa2ae710b32b733</citedby><cites>FETCH-LOGICAL-c337t-5fa59bb0ef3598ba0d97bd50368e99a9024f4b8fc77743462fa2ae710b32b733</cites><orcidid>0000-0003-2474-084X ; 0000-0001-9905-5930 ; 0000-0002-1113-6021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33704301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shilina, P. V</creatorcontrib><creatorcontrib>Ignatyeva, D. O</creatorcontrib><creatorcontrib>Kapralov, P. O</creatorcontrib><creatorcontrib>Sekatskii, S. K</creatorcontrib><creatorcontrib>Nur-E-Alam, M</creatorcontrib><creatorcontrib>Vasiliev, M</creatorcontrib><creatorcontrib>Alameh, K</creatorcontrib><creatorcontrib>Achanta, Venu Gopal</creatorcontrib><creatorcontrib>Song, Y</creatorcontrib><creatorcontrib>Hamidi, S. M</creatorcontrib><creatorcontrib>Zvezdin, A. K</creatorcontrib><creatorcontrib>Belotelov, V. I</creatorcontrib><title>Nanophotonic structures with optical surface modes for tunable spin current generation</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation via the spin Seebeck and inverse spin Hall effects. It has been experimentally demonstrated that optical surface modes localized at the PC surface covered by ferromagnetic layer and materials with giant spin-orbit coupling (SOC) notably increase the efficiency of the optically-induced spin current generation, and provides its tunability by modifying the light wavelength or angle of incidence. Up to 100% of the incident light power can be transferred to heat within the SOC layer and, therefore, to the spin current. Importantly, the high efficiency becomes accessible even for ultra-thin SOC layers. Moreover, the surface patterning of the PC-based spintronic nanostructure allows for the local generation of spin currents at the pattern scales rather than the diameter of the laser beam. We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation via the spin Seebeck and inverse spin Hall effects.</description><subject>Electron spin</subject><subject>Ferromagnetic materials</subject><subject>Incidence angle</subject><subject>Incident light</subject><subject>Laser beams</subject><subject>Nanostructure</subject><subject>Patterning</subject><subject>Personal computers</subject><subject>Photonic crystals</subject><subject>Spin-orbit interactions</subject><subject>Spintronics</subject><subject>Thin films</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkUtLAzEUhYMoVqsb90rAnVC9k2QeWUrrC0oFKW6HJJPYKW0y5oH4753aWlf3wvk493IOQhcZ3GZA-V0D1kNVcNIcoBMCDEaUluRwvxdsgE5DWAIUnBb0GA16HRiF7AS9z4R13cJFZ1uFQ_RJxeR1wF9tXGDXxVaJFQ7JG6E0Xruml4zzOCYr5Erj0LUWq-S9thF_aKu9iK2zZ-jIiFXQ57s5RPPHh_n4eTR9fXoZ309Hqn8hjnIjci4laENzXkkBDS9lkwMtKs254ECYYbIyqixLRllBjCBClxlISmRJ6RBdb2077z6TDrFeuuRtf7EmObCiKrJsQ91sKeVdCF6buvPtWvjvOoN6k2A9gdnbb4KTHr7aWSa51s0e_YusBy63gA9qr_5XQH8ApIR2Xg</recordid><startdate>20210321</startdate><enddate>20210321</enddate><creator>Shilina, P. V</creator><creator>Ignatyeva, D. O</creator><creator>Kapralov, P. O</creator><creator>Sekatskii, S. K</creator><creator>Nur-E-Alam, M</creator><creator>Vasiliev, M</creator><creator>Alameh, K</creator><creator>Achanta, Venu Gopal</creator><creator>Song, Y</creator><creator>Hamidi, S. M</creator><creator>Zvezdin, A. K</creator><creator>Belotelov, V. I</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2474-084X</orcidid><orcidid>https://orcid.org/0000-0001-9905-5930</orcidid><orcidid>https://orcid.org/0000-0002-1113-6021</orcidid></search><sort><creationdate>20210321</creationdate><title>Nanophotonic structures with optical surface modes for tunable spin current generation</title><author>Shilina, P. V ; Ignatyeva, D. O ; Kapralov, P. O ; Sekatskii, S. K ; Nur-E-Alam, M ; Vasiliev, M ; Alameh, K ; Achanta, Venu Gopal ; Song, Y ; Hamidi, S. M ; Zvezdin, A. K ; Belotelov, V. I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-5fa59bb0ef3598ba0d97bd50368e99a9024f4b8fc77743462fa2ae710b32b733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Electron spin</topic><topic>Ferromagnetic materials</topic><topic>Incidence angle</topic><topic>Incident light</topic><topic>Laser beams</topic><topic>Nanostructure</topic><topic>Patterning</topic><topic>Personal computers</topic><topic>Photonic crystals</topic><topic>Spin-orbit interactions</topic><topic>Spintronics</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shilina, P. V</creatorcontrib><creatorcontrib>Ignatyeva, D. O</creatorcontrib><creatorcontrib>Kapralov, P. O</creatorcontrib><creatorcontrib>Sekatskii, S. K</creatorcontrib><creatorcontrib>Nur-E-Alam, M</creatorcontrib><creatorcontrib>Vasiliev, M</creatorcontrib><creatorcontrib>Alameh, K</creatorcontrib><creatorcontrib>Achanta, Venu Gopal</creatorcontrib><creatorcontrib>Song, Y</creatorcontrib><creatorcontrib>Hamidi, S. M</creatorcontrib><creatorcontrib>Zvezdin, A. K</creatorcontrib><creatorcontrib>Belotelov, V. I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shilina, P. V</au><au>Ignatyeva, D. O</au><au>Kapralov, P. O</au><au>Sekatskii, S. K</au><au>Nur-E-Alam, M</au><au>Vasiliev, M</au><au>Alameh, K</au><au>Achanta, Venu Gopal</au><au>Song, Y</au><au>Hamidi, S. M</au><au>Zvezdin, A. K</au><au>Belotelov, V. I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanophotonic structures with optical surface modes for tunable spin current generation</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2021-03-21</date><risdate>2021</risdate><volume>13</volume><issue>11</issue><spage>5791</spage><epage>5799</epage><pages>5791-5799</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation via the spin Seebeck and inverse spin Hall effects. It has been experimentally demonstrated that optical surface modes localized at the PC surface covered by ferromagnetic layer and materials with giant spin-orbit coupling (SOC) notably increase the efficiency of the optically-induced spin current generation, and provides its tunability by modifying the light wavelength or angle of incidence. Up to 100% of the incident light power can be transferred to heat within the SOC layer and, therefore, to the spin current. Importantly, the high efficiency becomes accessible even for ultra-thin SOC layers. Moreover, the surface patterning of the PC-based spintronic nanostructure allows for the local generation of spin currents at the pattern scales rather than the diameter of the laser beam. We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation via the spin Seebeck and inverse spin Hall effects.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33704301</pmid><doi>10.1039/d0nr08692d</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2474-084X</orcidid><orcidid>https://orcid.org/0000-0001-9905-5930</orcidid><orcidid>https://orcid.org/0000-0002-1113-6021</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2021-03, Vol.13 (11), p.5791-5799
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_d0nr08692d
source Royal Society of Chemistry
subjects Electron spin
Ferromagnetic materials
Incidence angle
Incident light
Laser beams
Nanostructure
Patterning
Personal computers
Photonic crystals
Spin-orbit interactions
Spintronics
Thin films
title Nanophotonic structures with optical surface modes for tunable spin current generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanophotonic%20structures%20with%20optical%20surface%20modes%20for%20tunable%20spin%20current%20generation&rft.jtitle=Nanoscale&rft.au=Shilina,%20P.%20V&rft.date=2021-03-21&rft.volume=13&rft.issue=11&rft.spage=5791&rft.epage=5799&rft.pages=5791-5799&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr08692d&rft_dat=%3Cproquest_rsc_p%3E2504686113%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504686113&rft_id=info:pmid/33704301&rfr_iscdi=true