Nanophotonic structures with optical surface modes for tunable spin current generation
We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation via the spin Seebeck and inverse spin Hall effects. It has been experimentally demonstrated that optical surface modes localized at the PC surface covered by ferr...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2021-03, Vol.13 (11), p.5791-5799 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5799 |
---|---|
container_issue | 11 |
container_start_page | 5791 |
container_title | Nanoscale |
container_volume | 13 |
creator | Shilina, P. V Ignatyeva, D. O Kapralov, P. O Sekatskii, S. K Nur-E-Alam, M Vasiliev, M Alameh, K Achanta, Venu Gopal Song, Y Hamidi, S. M Zvezdin, A. K Belotelov, V. I |
description | We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation
via
the spin Seebeck and inverse spin Hall effects. It has been experimentally demonstrated that optical surface modes localized at the PC surface covered by ferromagnetic layer and materials with giant spin-orbit coupling (SOC) notably increase the efficiency of the optically-induced spin current generation, and provides its tunability by modifying the light wavelength or angle of incidence. Up to 100% of the incident light power can be transferred to heat within the SOC layer and, therefore, to the spin current. Importantly, the high efficiency becomes accessible even for ultra-thin SOC layers. Moreover, the surface patterning of the PC-based spintronic nanostructure allows for the local generation of spin currents at the pattern scales rather than the diameter of the laser beam.
We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation
via
the spin Seebeck and inverse spin Hall effects. |
doi_str_mv | 10.1039/d0nr08692d |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0nr08692d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2504686113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-5fa59bb0ef3598ba0d97bd50368e99a9024f4b8fc77743462fa2ae710b32b733</originalsourceid><addsrcrecordid>eNpFkUtLAzEUhYMoVqsb90rAnVC9k2QeWUrrC0oFKW6HJJPYKW0y5oH4753aWlf3wvk493IOQhcZ3GZA-V0D1kNVcNIcoBMCDEaUluRwvxdsgE5DWAIUnBb0GA16HRiF7AS9z4R13cJFZ1uFQ_RJxeR1wF9tXGDXxVaJFQ7JG6E0Xruml4zzOCYr5Erj0LUWq-S9thF_aKu9iK2zZ-jIiFXQ57s5RPPHh_n4eTR9fXoZ309Hqn8hjnIjci4laENzXkkBDS9lkwMtKs254ECYYbIyqixLRllBjCBClxlISmRJ6RBdb2077z6TDrFeuuRtf7EmObCiKrJsQ91sKeVdCF6buvPtWvjvOoN6k2A9gdnbb4KTHr7aWSa51s0e_YusBy63gA9qr_5XQH8ApIR2Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504686113</pqid></control><display><type>article</type><title>Nanophotonic structures with optical surface modes for tunable spin current generation</title><source>Royal Society of Chemistry</source><creator>Shilina, P. V ; Ignatyeva, D. O ; Kapralov, P. O ; Sekatskii, S. K ; Nur-E-Alam, M ; Vasiliev, M ; Alameh, K ; Achanta, Venu Gopal ; Song, Y ; Hamidi, S. M ; Zvezdin, A. K ; Belotelov, V. I</creator><creatorcontrib>Shilina, P. V ; Ignatyeva, D. O ; Kapralov, P. O ; Sekatskii, S. K ; Nur-E-Alam, M ; Vasiliev, M ; Alameh, K ; Achanta, Venu Gopal ; Song, Y ; Hamidi, S. M ; Zvezdin, A. K ; Belotelov, V. I</creatorcontrib><description>We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation
via
the spin Seebeck and inverse spin Hall effects. It has been experimentally demonstrated that optical surface modes localized at the PC surface covered by ferromagnetic layer and materials with giant spin-orbit coupling (SOC) notably increase the efficiency of the optically-induced spin current generation, and provides its tunability by modifying the light wavelength or angle of incidence. Up to 100% of the incident light power can be transferred to heat within the SOC layer and, therefore, to the spin current. Importantly, the high efficiency becomes accessible even for ultra-thin SOC layers. Moreover, the surface patterning of the PC-based spintronic nanostructure allows for the local generation of spin currents at the pattern scales rather than the diameter of the laser beam.
We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation
via
the spin Seebeck and inverse spin Hall effects.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr08692d</identifier><identifier>PMID: 33704301</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Electron spin ; Ferromagnetic materials ; Incidence angle ; Incident light ; Laser beams ; Nanostructure ; Patterning ; Personal computers ; Photonic crystals ; Spin-orbit interactions ; Spintronics ; Thin films</subject><ispartof>Nanoscale, 2021-03, Vol.13 (11), p.5791-5799</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-5fa59bb0ef3598ba0d97bd50368e99a9024f4b8fc77743462fa2ae710b32b733</citedby><cites>FETCH-LOGICAL-c337t-5fa59bb0ef3598ba0d97bd50368e99a9024f4b8fc77743462fa2ae710b32b733</cites><orcidid>0000-0003-2474-084X ; 0000-0001-9905-5930 ; 0000-0002-1113-6021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33704301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shilina, P. V</creatorcontrib><creatorcontrib>Ignatyeva, D. O</creatorcontrib><creatorcontrib>Kapralov, P. O</creatorcontrib><creatorcontrib>Sekatskii, S. K</creatorcontrib><creatorcontrib>Nur-E-Alam, M</creatorcontrib><creatorcontrib>Vasiliev, M</creatorcontrib><creatorcontrib>Alameh, K</creatorcontrib><creatorcontrib>Achanta, Venu Gopal</creatorcontrib><creatorcontrib>Song, Y</creatorcontrib><creatorcontrib>Hamidi, S. M</creatorcontrib><creatorcontrib>Zvezdin, A. K</creatorcontrib><creatorcontrib>Belotelov, V. I</creatorcontrib><title>Nanophotonic structures with optical surface modes for tunable spin current generation</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation
via
the spin Seebeck and inverse spin Hall effects. It has been experimentally demonstrated that optical surface modes localized at the PC surface covered by ferromagnetic layer and materials with giant spin-orbit coupling (SOC) notably increase the efficiency of the optically-induced spin current generation, and provides its tunability by modifying the light wavelength or angle of incidence. Up to 100% of the incident light power can be transferred to heat within the SOC layer and, therefore, to the spin current. Importantly, the high efficiency becomes accessible even for ultra-thin SOC layers. Moreover, the surface patterning of the PC-based spintronic nanostructure allows for the local generation of spin currents at the pattern scales rather than the diameter of the laser beam.
We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation
via
the spin Seebeck and inverse spin Hall effects.</description><subject>Electron spin</subject><subject>Ferromagnetic materials</subject><subject>Incidence angle</subject><subject>Incident light</subject><subject>Laser beams</subject><subject>Nanostructure</subject><subject>Patterning</subject><subject>Personal computers</subject><subject>Photonic crystals</subject><subject>Spin-orbit interactions</subject><subject>Spintronics</subject><subject>Thin films</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkUtLAzEUhYMoVqsb90rAnVC9k2QeWUrrC0oFKW6HJJPYKW0y5oH4753aWlf3wvk493IOQhcZ3GZA-V0D1kNVcNIcoBMCDEaUluRwvxdsgE5DWAIUnBb0GA16HRiF7AS9z4R13cJFZ1uFQ_RJxeR1wF9tXGDXxVaJFQ7JG6E0Xruml4zzOCYr5Erj0LUWq-S9thF_aKu9iK2zZ-jIiFXQ57s5RPPHh_n4eTR9fXoZ309Hqn8hjnIjci4laENzXkkBDS9lkwMtKs254ECYYbIyqixLRllBjCBClxlISmRJ6RBdb2077z6TDrFeuuRtf7EmObCiKrJsQ91sKeVdCF6buvPtWvjvOoN6k2A9gdnbb4KTHr7aWSa51s0e_YusBy63gA9qr_5XQH8ApIR2Xg</recordid><startdate>20210321</startdate><enddate>20210321</enddate><creator>Shilina, P. V</creator><creator>Ignatyeva, D. O</creator><creator>Kapralov, P. O</creator><creator>Sekatskii, S. K</creator><creator>Nur-E-Alam, M</creator><creator>Vasiliev, M</creator><creator>Alameh, K</creator><creator>Achanta, Venu Gopal</creator><creator>Song, Y</creator><creator>Hamidi, S. M</creator><creator>Zvezdin, A. K</creator><creator>Belotelov, V. I</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2474-084X</orcidid><orcidid>https://orcid.org/0000-0001-9905-5930</orcidid><orcidid>https://orcid.org/0000-0002-1113-6021</orcidid></search><sort><creationdate>20210321</creationdate><title>Nanophotonic structures with optical surface modes for tunable spin current generation</title><author>Shilina, P. V ; Ignatyeva, D. O ; Kapralov, P. O ; Sekatskii, S. K ; Nur-E-Alam, M ; Vasiliev, M ; Alameh, K ; Achanta, Venu Gopal ; Song, Y ; Hamidi, S. M ; Zvezdin, A. K ; Belotelov, V. I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-5fa59bb0ef3598ba0d97bd50368e99a9024f4b8fc77743462fa2ae710b32b733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Electron spin</topic><topic>Ferromagnetic materials</topic><topic>Incidence angle</topic><topic>Incident light</topic><topic>Laser beams</topic><topic>Nanostructure</topic><topic>Patterning</topic><topic>Personal computers</topic><topic>Photonic crystals</topic><topic>Spin-orbit interactions</topic><topic>Spintronics</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shilina, P. V</creatorcontrib><creatorcontrib>Ignatyeva, D. O</creatorcontrib><creatorcontrib>Kapralov, P. O</creatorcontrib><creatorcontrib>Sekatskii, S. K</creatorcontrib><creatorcontrib>Nur-E-Alam, M</creatorcontrib><creatorcontrib>Vasiliev, M</creatorcontrib><creatorcontrib>Alameh, K</creatorcontrib><creatorcontrib>Achanta, Venu Gopal</creatorcontrib><creatorcontrib>Song, Y</creatorcontrib><creatorcontrib>Hamidi, S. M</creatorcontrib><creatorcontrib>Zvezdin, A. K</creatorcontrib><creatorcontrib>Belotelov, V. I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shilina, P. V</au><au>Ignatyeva, D. O</au><au>Kapralov, P. O</au><au>Sekatskii, S. K</au><au>Nur-E-Alam, M</au><au>Vasiliev, M</au><au>Alameh, K</au><au>Achanta, Venu Gopal</au><au>Song, Y</au><au>Hamidi, S. M</au><au>Zvezdin, A. K</au><au>Belotelov, V. I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanophotonic structures with optical surface modes for tunable spin current generation</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2021-03-21</date><risdate>2021</risdate><volume>13</volume><issue>11</issue><spage>5791</spage><epage>5799</epage><pages>5791-5799</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation
via
the spin Seebeck and inverse spin Hall effects. It has been experimentally demonstrated that optical surface modes localized at the PC surface covered by ferromagnetic layer and materials with giant spin-orbit coupling (SOC) notably increase the efficiency of the optically-induced spin current generation, and provides its tunability by modifying the light wavelength or angle of incidence. Up to 100% of the incident light power can be transferred to heat within the SOC layer and, therefore, to the spin current. Importantly, the high efficiency becomes accessible even for ultra-thin SOC layers. Moreover, the surface patterning of the PC-based spintronic nanostructure allows for the local generation of spin currents at the pattern scales rather than the diameter of the laser beam.
We propose a novel type of photonic-crystal (PC)-based nanostructures for efficient and tunable optically-induced spin current generation
via
the spin Seebeck and inverse spin Hall effects.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33704301</pmid><doi>10.1039/d0nr08692d</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2474-084X</orcidid><orcidid>https://orcid.org/0000-0001-9905-5930</orcidid><orcidid>https://orcid.org/0000-0002-1113-6021</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2021-03, Vol.13 (11), p.5791-5799 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_rsc_primary_d0nr08692d |
source | Royal Society of Chemistry |
subjects | Electron spin Ferromagnetic materials Incidence angle Incident light Laser beams Nanostructure Patterning Personal computers Photonic crystals Spin-orbit interactions Spintronics Thin films |
title | Nanophotonic structures with optical surface modes for tunable spin current generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanophotonic%20structures%20with%20optical%20surface%20modes%20for%20tunable%20spin%20current%20generation&rft.jtitle=Nanoscale&rft.au=Shilina,%20P.%20V&rft.date=2021-03-21&rft.volume=13&rft.issue=11&rft.spage=5791&rft.epage=5799&rft.pages=5791-5799&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr08692d&rft_dat=%3Cproquest_rsc_p%3E2504686113%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504686113&rft_id=info:pmid/33704301&rfr_iscdi=true |