Fine-regulating ultramicropores in porous carbon a self-sacrificial template route for high-performance supercapacitors
Ultramicropores (size < 0.7 nm) are critically demanded to provide an efficient path for the penetration and transportation of electrolytes to achieve high-performance supercapacitors. Here, a self-sacrificial template approach is adopted, which introduces C8 alkyl chains with a kinetic diameter...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2021-01, Vol.13 (3), p.1961-1969 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1969 |
---|---|
container_issue | 3 |
container_start_page | 1961 |
container_title | Nanoscale |
container_volume | 13 |
creator | Zhao, Yunbo Yuan, Ye Xu, Yanmei Zheng, Guiyue Zhang, Qian Jiang, Yuqian Wang, Zeyu Bu, Naishun Xia, Lixin Yan, Zhuojun |
description | Ultramicropores (size < 0.7 nm) are critically demanded to provide an efficient path for the penetration and transportation of electrolytes to achieve high-performance supercapacitors. Here, a self-sacrificial template approach is adopted, which introduces C8 alkyl chains with a kinetic diameter of 0.8-1 nm to occupy the cavity of a porous aromatic framework (PAF). During the heating process, the alkyl chains decompose from the dense architecture as the temperature increased from 500 to 600 °C, forming ∼1 nm micropores. The newly-obtained cavities provide sites for thermal-driven skeleton engineering (700-900 °C) to obtain ultramicropores. Based on the well-defined pore structure, the carbonized PAF solid revealed outstanding electrochemical performances, including high rate and long-term stability in a 6 M KOH electrolyte. Notably, the specific capacitance (294 F g
−1
) derived from the self-sacrificial template method exceeds the capability of all the other methods for the construction of ultramicropores including self-template strategy, carbonization of nanoparticles, and template-assisted strategy. The synthesis of ultramicroporous carbons
via
the self-sacrificial template route opens up a promising gate to adjust the porous structure for high-performance applications in supercapacitors.
The microporosity of carbon materials was finely adjusted from ∼10 Å to 0.56 Å
via
a self-sacrificial template route, which provides an effective path for electrolyte penetration and transportation to realize high-performance supercapacitors. |
doi_str_mv | 10.1039/d0nr07480b |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d0nr07480b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d0nr07480b</sourcerecordid><originalsourceid>FETCH-rsc_primary_d0nr07480b3</originalsourceid><addsrcrecordid>eNqFj81OAzEMhCMEEuXnwh3JLxBwm9WWnhEVD8C9coN3a5RNIntXiLcnBwRHLjPfaOzDOHe3xoc1ht3jO2bFbfeExzO32mCHPoTt5vyX--7SXZl9IPa70IeV-9xLZq88LolmySMsaVaaJGqpRdlAMjQoi0EkPZYMBMZp8EZRZZAolGDmqbZ3hnbXdCgKJxlPvrI2nihHBltailQpylzUbtzFQMn49sev3f3-5e351avFQ1WZSL8Of2vCf_0305VRHw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fine-regulating ultramicropores in porous carbon a self-sacrificial template route for high-performance supercapacitors</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhao, Yunbo ; Yuan, Ye ; Xu, Yanmei ; Zheng, Guiyue ; Zhang, Qian ; Jiang, Yuqian ; Wang, Zeyu ; Bu, Naishun ; Xia, Lixin ; Yan, Zhuojun</creator><creatorcontrib>Zhao, Yunbo ; Yuan, Ye ; Xu, Yanmei ; Zheng, Guiyue ; Zhang, Qian ; Jiang, Yuqian ; Wang, Zeyu ; Bu, Naishun ; Xia, Lixin ; Yan, Zhuojun</creatorcontrib><description>Ultramicropores (size < 0.7 nm) are critically demanded to provide an efficient path for the penetration and transportation of electrolytes to achieve high-performance supercapacitors. Here, a self-sacrificial template approach is adopted, which introduces C8 alkyl chains with a kinetic diameter of 0.8-1 nm to occupy the cavity of a porous aromatic framework (PAF). During the heating process, the alkyl chains decompose from the dense architecture as the temperature increased from 500 to 600 °C, forming ∼1 nm micropores. The newly-obtained cavities provide sites for thermal-driven skeleton engineering (700-900 °C) to obtain ultramicropores. Based on the well-defined pore structure, the carbonized PAF solid revealed outstanding electrochemical performances, including high rate and long-term stability in a 6 M KOH electrolyte. Notably, the specific capacitance (294 F g
−1
) derived from the self-sacrificial template method exceeds the capability of all the other methods for the construction of ultramicropores including self-template strategy, carbonization of nanoparticles, and template-assisted strategy. The synthesis of ultramicroporous carbons
via
the self-sacrificial template route opens up a promising gate to adjust the porous structure for high-performance applications in supercapacitors.
The microporosity of carbon materials was finely adjusted from ∼10 Å to 0.56 Å
via
a self-sacrificial template route, which provides an effective path for electrolyte penetration and transportation to realize high-performance supercapacitors.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr07480b</identifier><ispartof>Nanoscale, 2021-01, Vol.13 (3), p.1961-1969</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Zhao, Yunbo</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Xu, Yanmei</creatorcontrib><creatorcontrib>Zheng, Guiyue</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Jiang, Yuqian</creatorcontrib><creatorcontrib>Wang, Zeyu</creatorcontrib><creatorcontrib>Bu, Naishun</creatorcontrib><creatorcontrib>Xia, Lixin</creatorcontrib><creatorcontrib>Yan, Zhuojun</creatorcontrib><title>Fine-regulating ultramicropores in porous carbon a self-sacrificial template route for high-performance supercapacitors</title><title>Nanoscale</title><description>Ultramicropores (size < 0.7 nm) are critically demanded to provide an efficient path for the penetration and transportation of electrolytes to achieve high-performance supercapacitors. Here, a self-sacrificial template approach is adopted, which introduces C8 alkyl chains with a kinetic diameter of 0.8-1 nm to occupy the cavity of a porous aromatic framework (PAF). During the heating process, the alkyl chains decompose from the dense architecture as the temperature increased from 500 to 600 °C, forming ∼1 nm micropores. The newly-obtained cavities provide sites for thermal-driven skeleton engineering (700-900 °C) to obtain ultramicropores. Based on the well-defined pore structure, the carbonized PAF solid revealed outstanding electrochemical performances, including high rate and long-term stability in a 6 M KOH electrolyte. Notably, the specific capacitance (294 F g
−1
) derived from the self-sacrificial template method exceeds the capability of all the other methods for the construction of ultramicropores including self-template strategy, carbonization of nanoparticles, and template-assisted strategy. The synthesis of ultramicroporous carbons
via
the self-sacrificial template route opens up a promising gate to adjust the porous structure for high-performance applications in supercapacitors.
The microporosity of carbon materials was finely adjusted from ∼10 Å to 0.56 Å
via
a self-sacrificial template route, which provides an effective path for electrolyte penetration and transportation to realize high-performance supercapacitors.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj81OAzEMhCMEEuXnwh3JLxBwm9WWnhEVD8C9coN3a5RNIntXiLcnBwRHLjPfaOzDOHe3xoc1ht3jO2bFbfeExzO32mCHPoTt5vyX--7SXZl9IPa70IeV-9xLZq88LolmySMsaVaaJGqpRdlAMjQoi0EkPZYMBMZp8EZRZZAolGDmqbZ3hnbXdCgKJxlPvrI2nihHBltailQpylzUbtzFQMn49sev3f3-5e351avFQ1WZSL8Of2vCf_0305VRHw</recordid><startdate>20210128</startdate><enddate>20210128</enddate><creator>Zhao, Yunbo</creator><creator>Yuan, Ye</creator><creator>Xu, Yanmei</creator><creator>Zheng, Guiyue</creator><creator>Zhang, Qian</creator><creator>Jiang, Yuqian</creator><creator>Wang, Zeyu</creator><creator>Bu, Naishun</creator><creator>Xia, Lixin</creator><creator>Yan, Zhuojun</creator><scope/></search><sort><creationdate>20210128</creationdate><title>Fine-regulating ultramicropores in porous carbon a self-sacrificial template route for high-performance supercapacitors</title><author>Zhao, Yunbo ; Yuan, Ye ; Xu, Yanmei ; Zheng, Guiyue ; Zhang, Qian ; Jiang, Yuqian ; Wang, Zeyu ; Bu, Naishun ; Xia, Lixin ; Yan, Zhuojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d0nr07480b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yunbo</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Xu, Yanmei</creatorcontrib><creatorcontrib>Zheng, Guiyue</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Jiang, Yuqian</creatorcontrib><creatorcontrib>Wang, Zeyu</creatorcontrib><creatorcontrib>Bu, Naishun</creatorcontrib><creatorcontrib>Xia, Lixin</creatorcontrib><creatorcontrib>Yan, Zhuojun</creatorcontrib><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yunbo</au><au>Yuan, Ye</au><au>Xu, Yanmei</au><au>Zheng, Guiyue</au><au>Zhang, Qian</au><au>Jiang, Yuqian</au><au>Wang, Zeyu</au><au>Bu, Naishun</au><au>Xia, Lixin</au><au>Yan, Zhuojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-regulating ultramicropores in porous carbon a self-sacrificial template route for high-performance supercapacitors</atitle><jtitle>Nanoscale</jtitle><date>2021-01-28</date><risdate>2021</risdate><volume>13</volume><issue>3</issue><spage>1961</spage><epage>1969</epage><pages>1961-1969</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Ultramicropores (size < 0.7 nm) are critically demanded to provide an efficient path for the penetration and transportation of electrolytes to achieve high-performance supercapacitors. Here, a self-sacrificial template approach is adopted, which introduces C8 alkyl chains with a kinetic diameter of 0.8-1 nm to occupy the cavity of a porous aromatic framework (PAF). During the heating process, the alkyl chains decompose from the dense architecture as the temperature increased from 500 to 600 °C, forming ∼1 nm micropores. The newly-obtained cavities provide sites for thermal-driven skeleton engineering (700-900 °C) to obtain ultramicropores. Based on the well-defined pore structure, the carbonized PAF solid revealed outstanding electrochemical performances, including high rate and long-term stability in a 6 M KOH electrolyte. Notably, the specific capacitance (294 F g
−1
) derived from the self-sacrificial template method exceeds the capability of all the other methods for the construction of ultramicropores including self-template strategy, carbonization of nanoparticles, and template-assisted strategy. The synthesis of ultramicroporous carbons
via
the self-sacrificial template route opens up a promising gate to adjust the porous structure for high-performance applications in supercapacitors.
The microporosity of carbon materials was finely adjusted from ∼10 Å to 0.56 Å
via
a self-sacrificial template route, which provides an effective path for electrolyte penetration and transportation to realize high-performance supercapacitors.</abstract><doi>10.1039/d0nr07480b</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2021-01, Vol.13 (3), p.1961-1969 |
issn | 2040-3364 2040-3372 |
language | |
recordid | cdi_rsc_primary_d0nr07480b |
source | Royal Society Of Chemistry Journals 2008- |
title | Fine-regulating ultramicropores in porous carbon a self-sacrificial template route for high-performance supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-regulating%20ultramicropores%20in%20porous%20carbon%20a%20self-sacrificial%20template%20route%20for%20high-performance%20supercapacitors&rft.jtitle=Nanoscale&rft.au=Zhao,%20Yunbo&rft.date=2021-01-28&rft.volume=13&rft.issue=3&rft.spage=1961&rft.epage=1969&rft.pages=1961-1969&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr07480b&rft_dat=%3Crsc%3Ed0nr07480b%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |