Selectivity of nitrate and chloride ions in microporous carbons: the role of anisotropic hydration and applied potentials

Understanding ion transport in porous carbons is critical for a wide range of technologies, including supercapacitors and capacitive deionization for water desalination, yet many details remain poorly understood. For instance, an atomistic understanding of how ion selectivity is influenced by the mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-10, Vol.12 (39), p.2292-2299
Hauptverfasser: Aydin, Fikret, Cerón, Maira R, Hawks, Steven A, Oyarzun, Diego I, Zhan, Cheng, Pham, Tuan Anh, Stadermann, Michael, Campbell, Patrick G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2299
container_issue 39
container_start_page 2292
container_title Nanoscale
container_volume 12
creator Aydin, Fikret
Cerón, Maira R
Hawks, Steven A
Oyarzun, Diego I
Zhan, Cheng
Pham, Tuan Anh
Stadermann, Michael
Campbell, Patrick G
description Understanding ion transport in porous carbons is critical for a wide range of technologies, including supercapacitors and capacitive deionization for water desalination, yet many details remain poorly understood. For instance, an atomistic understanding of how ion selectivity is influenced by the molecular shape of ions, morphology of the micropores and applied voltages is largely lacking. In this work, we combined molecular dynamics simulations with enhanced sampling methods to elucidate the mechanism of nitrate and chloride selectivity in subnanometer graphene slit-pores. We show that nitrate is preferentially adsorbed over chloride in the slit-like micropores. This preferential adsorption was found to stem from the weaker hydration energy and unique anisotropy of the ion solvation of nitrate. Beside the effects of ion dehydration, we found that applied potential plays an important role in determining the ion selectivity, leading to a lower selectivity of nitrate over chloride at a high applied potential. We conclude that the measured ion selectivity results from a complex interplay between voltage, confinement, and specific ion effects-including ion shape and local hydration structure. Molecular dynamics simulations show that the selectivity of nitrate over chloride in microporous carbons is determined by a complex interplay between voltage, confinement, and specific ion effects-including ion shape and local hydration structure.
doi_str_mv 10.1039/d0nr04496b
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0nr04496b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447840787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-bc9a021ee51367ac2bd92bce979b18dbd418ae65e37b88d32481fc64b3c5b7ea3</originalsourceid><addsrcrecordid>eNp9kc1rGzEQxZeQQl2nl94DSnMJAbfSSpZWueWrSSC00DZnoY9ZrLCWNpJc8H8f2Q4J9JDTDDO_efDmNc0Xgr8RTOV3h0PCjElu9ppJixmeUSra_dees4_Np5wfMeaScjpp1n9gAFv8P1_WKPYo-JJ0AaSDQ3YxxOQdIB9DRj6gpbcpjjHFVUZWJ1PHZ6gsAKU4wOZaB59jqYy3aLF2VamebrX0OA4eHBpjgVC8HvJB86GvBT6_1Gnz8OP67-Xt7P7Xzd3l-f3MMobLzFipcUsA5oRyoW1rnGyNBSmkIZ0zjpFOA58DFabrHG1ZR3rLmaF2bgRoOm2-7nRjLl5l6wvYhY0hVNuKcC6JkBU62UFjik8ryEUtfbYwDDpAdataxkTHsOhERY__Qx_jKoVqoVJzgmVHxIY63VH1Yzkn6NWY_FKntSJYbaJSV_jn721UFxU-3MEp21fuLcq6P3pvr0bX02evQ52v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451098177</pqid></control><display><type>article</type><title>Selectivity of nitrate and chloride ions in microporous carbons: the role of anisotropic hydration and applied potentials</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Aydin, Fikret ; Cerón, Maira R ; Hawks, Steven A ; Oyarzun, Diego I ; Zhan, Cheng ; Pham, Tuan Anh ; Stadermann, Michael ; Campbell, Patrick G</creator><creatorcontrib>Aydin, Fikret ; Cerón, Maira R ; Hawks, Steven A ; Oyarzun, Diego I ; Zhan, Cheng ; Pham, Tuan Anh ; Stadermann, Michael ; Campbell, Patrick G</creatorcontrib><description>Understanding ion transport in porous carbons is critical for a wide range of technologies, including supercapacitors and capacitive deionization for water desalination, yet many details remain poorly understood. For instance, an atomistic understanding of how ion selectivity is influenced by the molecular shape of ions, morphology of the micropores and applied voltages is largely lacking. In this work, we combined molecular dynamics simulations with enhanced sampling methods to elucidate the mechanism of nitrate and chloride selectivity in subnanometer graphene slit-pores. We show that nitrate is preferentially adsorbed over chloride in the slit-like micropores. This preferential adsorption was found to stem from the weaker hydration energy and unique anisotropy of the ion solvation of nitrate. Beside the effects of ion dehydration, we found that applied potential plays an important role in determining the ion selectivity, leading to a lower selectivity of nitrate over chloride at a high applied potential. We conclude that the measured ion selectivity results from a complex interplay between voltage, confinement, and specific ion effects-including ion shape and local hydration structure. Molecular dynamics simulations show that the selectivity of nitrate over chloride in microporous carbons is determined by a complex interplay between voltage, confinement, and specific ion effects-including ion shape and local hydration structure.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr04496b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anisotropy ; Chloride ; Chloride ions ; Dehydration ; Deionization ; Desalination ; Graphene ; Hydration ; Ion transport ; Molecular dynamics ; Morphology ; Nitrates ; Selectivity ; Shape effects ; Solvation</subject><ispartof>Nanoscale, 2020-10, Vol.12 (39), p.2292-2299</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-bc9a021ee51367ac2bd92bce979b18dbd418ae65e37b88d32481fc64b3c5b7ea3</citedby><cites>FETCH-LOGICAL-c440t-bc9a021ee51367ac2bd92bce979b18dbd418ae65e37b88d32481fc64b3c5b7ea3</cites><orcidid>0000-0002-5983-8698 ; 0000-0003-0025-7263 ; 0000-0003-3237-8043 ; 0000-0002-5151-0479 ; 0000000259838698 ; 0000000251510479 ; 0000000332378043 ; 0000000300257263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1669179$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Aydin, Fikret</creatorcontrib><creatorcontrib>Cerón, Maira R</creatorcontrib><creatorcontrib>Hawks, Steven A</creatorcontrib><creatorcontrib>Oyarzun, Diego I</creatorcontrib><creatorcontrib>Zhan, Cheng</creatorcontrib><creatorcontrib>Pham, Tuan Anh</creatorcontrib><creatorcontrib>Stadermann, Michael</creatorcontrib><creatorcontrib>Campbell, Patrick G</creatorcontrib><title>Selectivity of nitrate and chloride ions in microporous carbons: the role of anisotropic hydration and applied potentials</title><title>Nanoscale</title><description>Understanding ion transport in porous carbons is critical for a wide range of technologies, including supercapacitors and capacitive deionization for water desalination, yet many details remain poorly understood. For instance, an atomistic understanding of how ion selectivity is influenced by the molecular shape of ions, morphology of the micropores and applied voltages is largely lacking. In this work, we combined molecular dynamics simulations with enhanced sampling methods to elucidate the mechanism of nitrate and chloride selectivity in subnanometer graphene slit-pores. We show that nitrate is preferentially adsorbed over chloride in the slit-like micropores. This preferential adsorption was found to stem from the weaker hydration energy and unique anisotropy of the ion solvation of nitrate. Beside the effects of ion dehydration, we found that applied potential plays an important role in determining the ion selectivity, leading to a lower selectivity of nitrate over chloride at a high applied potential. We conclude that the measured ion selectivity results from a complex interplay between voltage, confinement, and specific ion effects-including ion shape and local hydration structure. Molecular dynamics simulations show that the selectivity of nitrate over chloride in microporous carbons is determined by a complex interplay between voltage, confinement, and specific ion effects-including ion shape and local hydration structure.</description><subject>Anisotropy</subject><subject>Chloride</subject><subject>Chloride ions</subject><subject>Dehydration</subject><subject>Deionization</subject><subject>Desalination</subject><subject>Graphene</subject><subject>Hydration</subject><subject>Ion transport</subject><subject>Molecular dynamics</subject><subject>Morphology</subject><subject>Nitrates</subject><subject>Selectivity</subject><subject>Shape effects</subject><subject>Solvation</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1rGzEQxZeQQl2nl94DSnMJAbfSSpZWueWrSSC00DZnoY9ZrLCWNpJc8H8f2Q4J9JDTDDO_efDmNc0Xgr8RTOV3h0PCjElu9ppJixmeUSra_dees4_Np5wfMeaScjpp1n9gAFv8P1_WKPYo-JJ0AaSDQ3YxxOQdIB9DRj6gpbcpjjHFVUZWJ1PHZ6gsAKU4wOZaB59jqYy3aLF2VamebrX0OA4eHBpjgVC8HvJB86GvBT6_1Gnz8OP67-Xt7P7Xzd3l-f3MMobLzFipcUsA5oRyoW1rnGyNBSmkIZ0zjpFOA58DFabrHG1ZR3rLmaF2bgRoOm2-7nRjLl5l6wvYhY0hVNuKcC6JkBU62UFjik8ryEUtfbYwDDpAdataxkTHsOhERY__Qx_jKoVqoVJzgmVHxIY63VH1Yzkn6NWY_FKntSJYbaJSV_jn721UFxU-3MEp21fuLcq6P3pvr0bX02evQ52v</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Aydin, Fikret</creator><creator>Cerón, Maira R</creator><creator>Hawks, Steven A</creator><creator>Oyarzun, Diego I</creator><creator>Zhan, Cheng</creator><creator>Pham, Tuan Anh</creator><creator>Stadermann, Michael</creator><creator>Campbell, Patrick G</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5983-8698</orcidid><orcidid>https://orcid.org/0000-0003-0025-7263</orcidid><orcidid>https://orcid.org/0000-0003-3237-8043</orcidid><orcidid>https://orcid.org/0000-0002-5151-0479</orcidid><orcidid>https://orcid.org/0000000259838698</orcidid><orcidid>https://orcid.org/0000000251510479</orcidid><orcidid>https://orcid.org/0000000332378043</orcidid><orcidid>https://orcid.org/0000000300257263</orcidid></search><sort><creationdate>20201015</creationdate><title>Selectivity of nitrate and chloride ions in microporous carbons: the role of anisotropic hydration and applied potentials</title><author>Aydin, Fikret ; Cerón, Maira R ; Hawks, Steven A ; Oyarzun, Diego I ; Zhan, Cheng ; Pham, Tuan Anh ; Stadermann, Michael ; Campbell, Patrick G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-bc9a021ee51367ac2bd92bce979b18dbd418ae65e37b88d32481fc64b3c5b7ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Chloride</topic><topic>Chloride ions</topic><topic>Dehydration</topic><topic>Deionization</topic><topic>Desalination</topic><topic>Graphene</topic><topic>Hydration</topic><topic>Ion transport</topic><topic>Molecular dynamics</topic><topic>Morphology</topic><topic>Nitrates</topic><topic>Selectivity</topic><topic>Shape effects</topic><topic>Solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aydin, Fikret</creatorcontrib><creatorcontrib>Cerón, Maira R</creatorcontrib><creatorcontrib>Hawks, Steven A</creatorcontrib><creatorcontrib>Oyarzun, Diego I</creatorcontrib><creatorcontrib>Zhan, Cheng</creatorcontrib><creatorcontrib>Pham, Tuan Anh</creatorcontrib><creatorcontrib>Stadermann, Michael</creatorcontrib><creatorcontrib>Campbell, Patrick G</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aydin, Fikret</au><au>Cerón, Maira R</au><au>Hawks, Steven A</au><au>Oyarzun, Diego I</au><au>Zhan, Cheng</au><au>Pham, Tuan Anh</au><au>Stadermann, Michael</au><au>Campbell, Patrick G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selectivity of nitrate and chloride ions in microporous carbons: the role of anisotropic hydration and applied potentials</atitle><jtitle>Nanoscale</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>12</volume><issue>39</issue><spage>2292</spage><epage>2299</epage><pages>2292-2299</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Understanding ion transport in porous carbons is critical for a wide range of technologies, including supercapacitors and capacitive deionization for water desalination, yet many details remain poorly understood. For instance, an atomistic understanding of how ion selectivity is influenced by the molecular shape of ions, morphology of the micropores and applied voltages is largely lacking. In this work, we combined molecular dynamics simulations with enhanced sampling methods to elucidate the mechanism of nitrate and chloride selectivity in subnanometer graphene slit-pores. We show that nitrate is preferentially adsorbed over chloride in the slit-like micropores. This preferential adsorption was found to stem from the weaker hydration energy and unique anisotropy of the ion solvation of nitrate. Beside the effects of ion dehydration, we found that applied potential plays an important role in determining the ion selectivity, leading to a lower selectivity of nitrate over chloride at a high applied potential. We conclude that the measured ion selectivity results from a complex interplay between voltage, confinement, and specific ion effects-including ion shape and local hydration structure. Molecular dynamics simulations show that the selectivity of nitrate over chloride in microporous carbons is determined by a complex interplay between voltage, confinement, and specific ion effects-including ion shape and local hydration structure.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nr04496b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5983-8698</orcidid><orcidid>https://orcid.org/0000-0003-0025-7263</orcidid><orcidid>https://orcid.org/0000-0003-3237-8043</orcidid><orcidid>https://orcid.org/0000-0002-5151-0479</orcidid><orcidid>https://orcid.org/0000000259838698</orcidid><orcidid>https://orcid.org/0000000251510479</orcidid><orcidid>https://orcid.org/0000000332378043</orcidid><orcidid>https://orcid.org/0000000300257263</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-10, Vol.12 (39), p.2292-2299
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_d0nr04496b
source Royal Society Of Chemistry Journals 2008-
subjects Anisotropy
Chloride
Chloride ions
Dehydration
Deionization
Desalination
Graphene
Hydration
Ion transport
Molecular dynamics
Morphology
Nitrates
Selectivity
Shape effects
Solvation
title Selectivity of nitrate and chloride ions in microporous carbons: the role of anisotropic hydration and applied potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A26%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selectivity%20of%20nitrate%20and%20chloride%20ions%20in%20microporous%20carbons:%20the%20role%20of%20anisotropic%20hydration%20and%20applied%20potentials&rft.jtitle=Nanoscale&rft.au=Aydin,%20Fikret&rft.date=2020-10-15&rft.volume=12&rft.issue=39&rft.spage=2292&rft.epage=2299&rft.pages=2292-2299&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr04496b&rft_dat=%3Cproquest_rsc_p%3E2447840787%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451098177&rft_id=info:pmid/&rfr_iscdi=true