Manganese-based layered double hydroxide nanoparticles as highly efficient ozone decomposition catalysts with tunable valence state

Manganese oxides are well explored effective ozone decomposition catalysts, but the accumulation of oxygen trapped on their surfaces and high valence state restrict their catalyst efficiency. Herein, we report manganese based layered double hydroxide (LDH) catalysts with different average oxidation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-06, Vol.12 (24), p.12817-12823
Hauptverfasser: Wang, Siyu, Zhu, Yu-quan, Zhang, Yuhong, Wang, Binxia, Yan, Hong, Liu, Wendi, Lin, Yanjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12823
container_issue 24
container_start_page 12817
container_title Nanoscale
container_volume 12
creator Wang, Siyu
Zhu, Yu-quan
Zhang, Yuhong
Wang, Binxia
Yan, Hong
Liu, Wendi
Lin, Yanjun
description Manganese oxides are well explored effective ozone decomposition catalysts, but the accumulation of oxygen trapped on their surfaces and high valence state restrict their catalyst efficiency. Herein, we report manganese based layered double hydroxide (LDH) catalysts with different average oxidation states (AOS) of Mn. MgMnAl-LDH catalysts show large specific surface area, abundant oxygen vacancies, stable structure and excellent catalytic ozone decomposition performance. The valence state of Mn can be tuned by adjusting the metallic element ratio in the LDH matrix, and a catalyst with AOS of only 2.3 is acquired. The impacts of the valence states of Mn on the catalytic ozone decomposition process were further studied by density functional theory (DFT) calculations. It is found that the Mn 2+ facilitates the desorption of generated oxygen on the surface of LDHs, while Mn 3+ and Mn 4+ contribute to the dissociation of adsorbed ozone. This paper reported a Mn based layered double hydroxide catalyst with tunable valence state, and the effects of different valence states on catalytic ozone decomposition.
doi_str_mv 10.1039/d0nr02796k
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0nr02796k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413994451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-6d29c7fb9e6415cfa18191bc279d5ab3ba51bfb85704cd2bebf8eb3652d577493</originalsourceid><addsrcrecordid>eNp9kc1rFTEUxQdRsFY37oWIGxFGk0km87KU-lVaFUTXQz5u-lLzkjE30zpu_ced55MKLlydC-fH4R5O0zxk9DmjXL1wNBXaDUp-vdUcdVTQlvOhu31zS3G3uYd4SalUXPKj5ud7nS50AoTWaARHol6grOrybCKQ7eJK_h4ckKRTnnSpwUZAopFsw8U2LgS8DzZAqiT_yAmIA5t3U8ZQQ07E6qrjghXJdahbUuek97FXOkKyQLDqCvebO15HhAd_9Lj58ub155N37fnHt6cnL89by4ehttJ1yg7eKJCC9dZrtmGKGbvWdb023OieGW82_UCFdZ0B4zdguOw71w-DUPy4eXrInUr-NgPWcRfQQoxr_zzj2AnGlRKiZyv65B_0Ms8lrd_tKblRUtBupZ4dKFsyYgE_TiXsdFlGRsf9HuMr-uHT7z3OVvjRAS5ob7i_e63-4__54-Q8_wUodZZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416896402</pqid></control><display><type>article</type><title>Manganese-based layered double hydroxide nanoparticles as highly efficient ozone decomposition catalysts with tunable valence state</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Siyu ; Zhu, Yu-quan ; Zhang, Yuhong ; Wang, Binxia ; Yan, Hong ; Liu, Wendi ; Lin, Yanjun</creator><creatorcontrib>Wang, Siyu ; Zhu, Yu-quan ; Zhang, Yuhong ; Wang, Binxia ; Yan, Hong ; Liu, Wendi ; Lin, Yanjun</creatorcontrib><description>Manganese oxides are well explored effective ozone decomposition catalysts, but the accumulation of oxygen trapped on their surfaces and high valence state restrict their catalyst efficiency. Herein, we report manganese based layered double hydroxide (LDH) catalysts with different average oxidation states (AOS) of Mn. MgMnAl-LDH catalysts show large specific surface area, abundant oxygen vacancies, stable structure and excellent catalytic ozone decomposition performance. The valence state of Mn can be tuned by adjusting the metallic element ratio in the LDH matrix, and a catalyst with AOS of only 2.3 is acquired. The impacts of the valence states of Mn on the catalytic ozone decomposition process were further studied by density functional theory (DFT) calculations. It is found that the Mn 2+ facilitates the desorption of generated oxygen on the surface of LDHs, while Mn 3+ and Mn 4+ contribute to the dissociation of adsorbed ozone. This paper reported a Mn based layered double hydroxide catalyst with tunable valence state, and the effects of different valence states on catalytic ozone decomposition.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr02796k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Decomposition ; Density functional theory ; Hydroxides ; Manganese ; Nanoparticles ; Oxidation ; Oxygen ; Ozone ; Valence</subject><ispartof>Nanoscale, 2020-06, Vol.12 (24), p.12817-12823</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-6d29c7fb9e6415cfa18191bc279d5ab3ba51bfb85704cd2bebf8eb3652d577493</citedby><cites>FETCH-LOGICAL-c377t-6d29c7fb9e6415cfa18191bc279d5ab3ba51bfb85704cd2bebf8eb3652d577493</cites><orcidid>0000-0003-0285-3704 ; 0000-0002-9898-3687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Siyu</creatorcontrib><creatorcontrib>Zhu, Yu-quan</creatorcontrib><creatorcontrib>Zhang, Yuhong</creatorcontrib><creatorcontrib>Wang, Binxia</creatorcontrib><creatorcontrib>Yan, Hong</creatorcontrib><creatorcontrib>Liu, Wendi</creatorcontrib><creatorcontrib>Lin, Yanjun</creatorcontrib><title>Manganese-based layered double hydroxide nanoparticles as highly efficient ozone decomposition catalysts with tunable valence state</title><title>Nanoscale</title><description>Manganese oxides are well explored effective ozone decomposition catalysts, but the accumulation of oxygen trapped on their surfaces and high valence state restrict their catalyst efficiency. Herein, we report manganese based layered double hydroxide (LDH) catalysts with different average oxidation states (AOS) of Mn. MgMnAl-LDH catalysts show large specific surface area, abundant oxygen vacancies, stable structure and excellent catalytic ozone decomposition performance. The valence state of Mn can be tuned by adjusting the metallic element ratio in the LDH matrix, and a catalyst with AOS of only 2.3 is acquired. The impacts of the valence states of Mn on the catalytic ozone decomposition process were further studied by density functional theory (DFT) calculations. It is found that the Mn 2+ facilitates the desorption of generated oxygen on the surface of LDHs, while Mn 3+ and Mn 4+ contribute to the dissociation of adsorbed ozone. This paper reported a Mn based layered double hydroxide catalyst with tunable valence state, and the effects of different valence states on catalytic ozone decomposition.</description><subject>Catalysts</subject><subject>Decomposition</subject><subject>Density functional theory</subject><subject>Hydroxides</subject><subject>Manganese</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Ozone</subject><subject>Valence</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1rFTEUxQdRsFY37oWIGxFGk0km87KU-lVaFUTXQz5u-lLzkjE30zpu_ced55MKLlydC-fH4R5O0zxk9DmjXL1wNBXaDUp-vdUcdVTQlvOhu31zS3G3uYd4SalUXPKj5ud7nS50AoTWaARHol6grOrybCKQ7eJK_h4ckKRTnnSpwUZAopFsw8U2LgS8DzZAqiT_yAmIA5t3U8ZQQ07E6qrjghXJdahbUuek97FXOkKyQLDqCvebO15HhAd_9Lj58ub155N37fnHt6cnL89by4ehttJ1yg7eKJCC9dZrtmGKGbvWdb023OieGW82_UCFdZ0B4zdguOw71w-DUPy4eXrInUr-NgPWcRfQQoxr_zzj2AnGlRKiZyv65B_0Ms8lrd_tKblRUtBupZ4dKFsyYgE_TiXsdFlGRsf9HuMr-uHT7z3OVvjRAS5ob7i_e63-4__54-Q8_wUodZZg</recordid><startdate>20200628</startdate><enddate>20200628</enddate><creator>Wang, Siyu</creator><creator>Zhu, Yu-quan</creator><creator>Zhang, Yuhong</creator><creator>Wang, Binxia</creator><creator>Yan, Hong</creator><creator>Liu, Wendi</creator><creator>Lin, Yanjun</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0285-3704</orcidid><orcidid>https://orcid.org/0000-0002-9898-3687</orcidid></search><sort><creationdate>20200628</creationdate><title>Manganese-based layered double hydroxide nanoparticles as highly efficient ozone decomposition catalysts with tunable valence state</title><author>Wang, Siyu ; Zhu, Yu-quan ; Zhang, Yuhong ; Wang, Binxia ; Yan, Hong ; Liu, Wendi ; Lin, Yanjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-6d29c7fb9e6415cfa18191bc279d5ab3ba51bfb85704cd2bebf8eb3652d577493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysts</topic><topic>Decomposition</topic><topic>Density functional theory</topic><topic>Hydroxides</topic><topic>Manganese</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Ozone</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Siyu</creatorcontrib><creatorcontrib>Zhu, Yu-quan</creatorcontrib><creatorcontrib>Zhang, Yuhong</creatorcontrib><creatorcontrib>Wang, Binxia</creatorcontrib><creatorcontrib>Yan, Hong</creatorcontrib><creatorcontrib>Liu, Wendi</creatorcontrib><creatorcontrib>Lin, Yanjun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Siyu</au><au>Zhu, Yu-quan</au><au>Zhang, Yuhong</au><au>Wang, Binxia</au><au>Yan, Hong</au><au>Liu, Wendi</au><au>Lin, Yanjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manganese-based layered double hydroxide nanoparticles as highly efficient ozone decomposition catalysts with tunable valence state</atitle><jtitle>Nanoscale</jtitle><date>2020-06-28</date><risdate>2020</risdate><volume>12</volume><issue>24</issue><spage>12817</spage><epage>12823</epage><pages>12817-12823</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Manganese oxides are well explored effective ozone decomposition catalysts, but the accumulation of oxygen trapped on their surfaces and high valence state restrict their catalyst efficiency. Herein, we report manganese based layered double hydroxide (LDH) catalysts with different average oxidation states (AOS) of Mn. MgMnAl-LDH catalysts show large specific surface area, abundant oxygen vacancies, stable structure and excellent catalytic ozone decomposition performance. The valence state of Mn can be tuned by adjusting the metallic element ratio in the LDH matrix, and a catalyst with AOS of only 2.3 is acquired. The impacts of the valence states of Mn on the catalytic ozone decomposition process were further studied by density functional theory (DFT) calculations. It is found that the Mn 2+ facilitates the desorption of generated oxygen on the surface of LDHs, while Mn 3+ and Mn 4+ contribute to the dissociation of adsorbed ozone. This paper reported a Mn based layered double hydroxide catalyst with tunable valence state, and the effects of different valence states on catalytic ozone decomposition.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nr02796k</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0285-3704</orcidid><orcidid>https://orcid.org/0000-0002-9898-3687</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-06, Vol.12 (24), p.12817-12823
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_d0nr02796k
source Royal Society Of Chemistry Journals 2008-
subjects Catalysts
Decomposition
Density functional theory
Hydroxides
Manganese
Nanoparticles
Oxidation
Oxygen
Ozone
Valence
title Manganese-based layered double hydroxide nanoparticles as highly efficient ozone decomposition catalysts with tunable valence state
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manganese-based%20layered%20double%20hydroxide%20nanoparticles%20as%20highly%20efficient%20ozone%20decomposition%20catalysts%20with%20tunable%20valence%20state&rft.jtitle=Nanoscale&rft.au=Wang,%20Siyu&rft.date=2020-06-28&rft.volume=12&rft.issue=24&rft.spage=12817&rft.epage=12823&rft.pages=12817-12823&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr02796k&rft_dat=%3Cproquest_rsc_p%3E2413994451%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416896402&rft_id=info:pmid/&rfr_iscdi=true