An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors

The depletion of the traditional fuels and unavoidable seasonal intermittence in solar/wind energy has made an urgent call to develop suitable energy conversion and storage systems. Since both the efficiency and cost of these systems are greatly impacted by electroactive materials, designing an effi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2021-02, Vol.45 (5), p.2795-283
Hauptverfasser: Samal, R. R, Samantara, Aneeya K, Mahalik, S, Behera, J. N, Dash, B, Sanjay, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 283
container_issue 5
container_start_page 2795
container_title New journal of chemistry
container_volume 45
creator Samal, R. R
Samantara, Aneeya K
Mahalik, S
Behera, J. N
Dash, B
Sanjay, K
description The depletion of the traditional fuels and unavoidable seasonal intermittence in solar/wind energy has made an urgent call to develop suitable energy conversion and storage systems. Since both the efficiency and cost of these systems are greatly impacted by electroactive materials, designing an efficient material through a scalable methodology is indispensable. Keeping these things in mind, we demonstrated the synthesis of Co 3 O 4 nanoflakes via the anionic (cetyl trimethylammonium bromide; CTAB) and cationic (sodium lauryl sulphate; SLS) surfactant-assisted hydrothermal method at different annealing temperatures (350 °C and 500 °C). The uniform surface morphology and crystallinity of the as-synthesized nanoflakes were analysed via field emission scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction techniques. Further, the electrochemical charge storage performances of these nanoflakes were explored in a three-electrode electrochemical measurement. The CTAB-assisted Co 3 O 4 showed an impressive charge storage performance in terms of higher specific capacitance (777.45 F g −1 ), energy (32.66 W h kg −1 ) and power (39.8 kW kg −1 ) densities ( E D and P D ) compared to that derived through SLS. Further, the CTAB-500 °C showed better cyclic durability with 83% retention of the initial capacitance after 5000 repeated cycles. Therefore, we presume that the present synthetic strategy will be a scalable and efficient method for the synthesis of Co 3 O 4 that can be used as a future energy storage material for sustainability. Schematic representation of surfactant action for synthesis of cobalt hydroxide and oxide.
doi_str_mv 10.1039/d0nj05088a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0nj05088a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487696495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-1765647550b034ef93defef4c6ec8d237c14ec95b183b269d1f7bd20c1294b653</originalsourceid><addsrcrecordid>eNpFkU9LAzEQxYMoWKsX70LAm7Ca7Gazm2PxvxS96HnJJhOask3WJBX7Qfy-plb09GaYH-8xMwidUnJJSSWuNHFLUpO2lXtoQisuClFyup9rylhBasYP0VGMS0IobTidoK-Zw9JZ76zKqrGSadfEdTBSJelSIWO0MYHGi40OPi0grOSA48blMk-wN1j5Xg4J-0-rATvp_ChDsmqAiGXEmcPZy34AhgFUCj5TK5kg2GxkfMhpIwQlR6ls8iEeowMjhwgnvzpFb3e3r9cPxfzl_vF6Ni9U2dJU5BVqzpq6Jj2pGBhRaTBgmOKgWl1WjaIMlKh72lZ9yYWmpul1SRQtBet5XU3R-c53DP59DTF1S78OLkd2JWsbLjgTW-piR6ngYwxgujHYlQybjpJue_buhjw__Zx9luGzHRyi-uP-31J9AxaUgv0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487696495</pqid></control><display><type>article</type><title>An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Samal, R. R ; Samantara, Aneeya K ; Mahalik, S ; Behera, J. N ; Dash, B ; Sanjay, K</creator><creatorcontrib>Samal, R. R ; Samantara, Aneeya K ; Mahalik, S ; Behera, J. N ; Dash, B ; Sanjay, K</creatorcontrib><description>The depletion of the traditional fuels and unavoidable seasonal intermittence in solar/wind energy has made an urgent call to develop suitable energy conversion and storage systems. Since both the efficiency and cost of these systems are greatly impacted by electroactive materials, designing an efficient material through a scalable methodology is indispensable. Keeping these things in mind, we demonstrated the synthesis of Co 3 O 4 nanoflakes via the anionic (cetyl trimethylammonium bromide; CTAB) and cationic (sodium lauryl sulphate; SLS) surfactant-assisted hydrothermal method at different annealing temperatures (350 °C and 500 °C). The uniform surface morphology and crystallinity of the as-synthesized nanoflakes were analysed via field emission scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction techniques. Further, the electrochemical charge storage performances of these nanoflakes were explored in a three-electrode electrochemical measurement. The CTAB-assisted Co 3 O 4 showed an impressive charge storage performance in terms of higher specific capacitance (777.45 F g −1 ), energy (32.66 W h kg −1 ) and power (39.8 kW kg −1 ) densities ( E D and P D ) compared to that derived through SLS. Further, the CTAB-500 °C showed better cyclic durability with 83% retention of the initial capacitance after 5000 repeated cycles. Therefore, we presume that the present synthetic strategy will be a scalable and efficient method for the synthesis of Co 3 O 4 that can be used as a future energy storage material for sustainability. Schematic representation of surfactant action for synthesis of cobalt hydroxide and oxide.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/d0nj05088a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Capacitance ; Cations ; Cetyltrimethylammonium bromide ; Cobalt oxides ; Depletion ; Electroactive materials ; Electrode materials ; Electrodes ; Electron microscopy ; Emission analysis ; Energy conversion efficiency ; Energy storage ; Field emission microscopy ; Microscopy ; Morphology ; Nanoparticles ; Sodium dodecyl sulfate ; Storage systems ; Surfactants ; Synthesis ; Wind power ; X ray powder diffraction</subject><ispartof>New journal of chemistry, 2021-02, Vol.45 (5), p.2795-283</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-1765647550b034ef93defef4c6ec8d237c14ec95b183b269d1f7bd20c1294b653</citedby><cites>FETCH-LOGICAL-c281t-1765647550b034ef93defef4c6ec8d237c14ec95b183b269d1f7bd20c1294b653</cites><orcidid>0000-0001-5448-271X ; 0000-0001-6743-4493 ; 0000-0001-7686-0427 ; 0000-0003-1161-588X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Samal, R. R</creatorcontrib><creatorcontrib>Samantara, Aneeya K</creatorcontrib><creatorcontrib>Mahalik, S</creatorcontrib><creatorcontrib>Behera, J. N</creatorcontrib><creatorcontrib>Dash, B</creatorcontrib><creatorcontrib>Sanjay, K</creatorcontrib><title>An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors</title><title>New journal of chemistry</title><description>The depletion of the traditional fuels and unavoidable seasonal intermittence in solar/wind energy has made an urgent call to develop suitable energy conversion and storage systems. Since both the efficiency and cost of these systems are greatly impacted by electroactive materials, designing an efficient material through a scalable methodology is indispensable. Keeping these things in mind, we demonstrated the synthesis of Co 3 O 4 nanoflakes via the anionic (cetyl trimethylammonium bromide; CTAB) and cationic (sodium lauryl sulphate; SLS) surfactant-assisted hydrothermal method at different annealing temperatures (350 °C and 500 °C). The uniform surface morphology and crystallinity of the as-synthesized nanoflakes were analysed via field emission scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction techniques. Further, the electrochemical charge storage performances of these nanoflakes were explored in a three-electrode electrochemical measurement. The CTAB-assisted Co 3 O 4 showed an impressive charge storage performance in terms of higher specific capacitance (777.45 F g −1 ), energy (32.66 W h kg −1 ) and power (39.8 kW kg −1 ) densities ( E D and P D ) compared to that derived through SLS. Further, the CTAB-500 °C showed better cyclic durability with 83% retention of the initial capacitance after 5000 repeated cycles. Therefore, we presume that the present synthetic strategy will be a scalable and efficient method for the synthesis of Co 3 O 4 that can be used as a future energy storage material for sustainability. Schematic representation of surfactant action for synthesis of cobalt hydroxide and oxide.</description><subject>Capacitance</subject><subject>Cations</subject><subject>Cetyltrimethylammonium bromide</subject><subject>Cobalt oxides</subject><subject>Depletion</subject><subject>Electroactive materials</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron microscopy</subject><subject>Emission analysis</subject><subject>Energy conversion efficiency</subject><subject>Energy storage</subject><subject>Field emission microscopy</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Sodium dodecyl sulfate</subject><subject>Storage systems</subject><subject>Surfactants</subject><subject>Synthesis</subject><subject>Wind power</subject><subject>X ray powder diffraction</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkU9LAzEQxYMoWKsX70LAm7Ca7Gazm2PxvxS96HnJJhOask3WJBX7Qfy-plb09GaYH-8xMwidUnJJSSWuNHFLUpO2lXtoQisuClFyup9rylhBasYP0VGMS0IobTidoK-Zw9JZ76zKqrGSadfEdTBSJelSIWO0MYHGi40OPi0grOSA48blMk-wN1j5Xg4J-0-rATvp_ChDsmqAiGXEmcPZy34AhgFUCj5TK5kg2GxkfMhpIwQlR6ls8iEeowMjhwgnvzpFb3e3r9cPxfzl_vF6Ni9U2dJU5BVqzpq6Jj2pGBhRaTBgmOKgWl1WjaIMlKh72lZ9yYWmpul1SRQtBet5XU3R-c53DP59DTF1S78OLkd2JWsbLjgTW-piR6ngYwxgujHYlQybjpJue_buhjw__Zx9luGzHRyi-uP-31J9AxaUgv0</recordid><startdate>20210210</startdate><enddate>20210210</enddate><creator>Samal, R. R</creator><creator>Samantara, Aneeya K</creator><creator>Mahalik, S</creator><creator>Behera, J. N</creator><creator>Dash, B</creator><creator>Sanjay, K</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope><orcidid>https://orcid.org/0000-0001-5448-271X</orcidid><orcidid>https://orcid.org/0000-0001-6743-4493</orcidid><orcidid>https://orcid.org/0000-0001-7686-0427</orcidid><orcidid>https://orcid.org/0000-0003-1161-588X</orcidid></search><sort><creationdate>20210210</creationdate><title>An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors</title><author>Samal, R. R ; Samantara, Aneeya K ; Mahalik, S ; Behera, J. N ; Dash, B ; Sanjay, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-1765647550b034ef93defef4c6ec8d237c14ec95b183b269d1f7bd20c1294b653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capacitance</topic><topic>Cations</topic><topic>Cetyltrimethylammonium bromide</topic><topic>Cobalt oxides</topic><topic>Depletion</topic><topic>Electroactive materials</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron microscopy</topic><topic>Emission analysis</topic><topic>Energy conversion efficiency</topic><topic>Energy storage</topic><topic>Field emission microscopy</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Sodium dodecyl sulfate</topic><topic>Storage systems</topic><topic>Surfactants</topic><topic>Synthesis</topic><topic>Wind power</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samal, R. R</creatorcontrib><creatorcontrib>Samantara, Aneeya K</creatorcontrib><creatorcontrib>Mahalik, S</creatorcontrib><creatorcontrib>Behera, J. N</creatorcontrib><creatorcontrib>Dash, B</creatorcontrib><creatorcontrib>Sanjay, K</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samal, R. R</au><au>Samantara, Aneeya K</au><au>Mahalik, S</au><au>Behera, J. N</au><au>Dash, B</au><au>Sanjay, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors</atitle><jtitle>New journal of chemistry</jtitle><date>2021-02-10</date><risdate>2021</risdate><volume>45</volume><issue>5</issue><spage>2795</spage><epage>283</epage><pages>2795-283</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>The depletion of the traditional fuels and unavoidable seasonal intermittence in solar/wind energy has made an urgent call to develop suitable energy conversion and storage systems. Since both the efficiency and cost of these systems are greatly impacted by electroactive materials, designing an efficient material through a scalable methodology is indispensable. Keeping these things in mind, we demonstrated the synthesis of Co 3 O 4 nanoflakes via the anionic (cetyl trimethylammonium bromide; CTAB) and cationic (sodium lauryl sulphate; SLS) surfactant-assisted hydrothermal method at different annealing temperatures (350 °C and 500 °C). The uniform surface morphology and crystallinity of the as-synthesized nanoflakes were analysed via field emission scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction techniques. Further, the electrochemical charge storage performances of these nanoflakes were explored in a three-electrode electrochemical measurement. The CTAB-assisted Co 3 O 4 showed an impressive charge storage performance in terms of higher specific capacitance (777.45 F g −1 ), energy (32.66 W h kg −1 ) and power (39.8 kW kg −1 ) densities ( E D and P D ) compared to that derived through SLS. Further, the CTAB-500 °C showed better cyclic durability with 83% retention of the initial capacitance after 5000 repeated cycles. Therefore, we presume that the present synthetic strategy will be a scalable and efficient method for the synthesis of Co 3 O 4 that can be used as a future energy storage material for sustainability. Schematic representation of surfactant action for synthesis of cobalt hydroxide and oxide.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nj05088a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5448-271X</orcidid><orcidid>https://orcid.org/0000-0001-6743-4493</orcidid><orcidid>https://orcid.org/0000-0001-7686-0427</orcidid><orcidid>https://orcid.org/0000-0003-1161-588X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1144-0546
ispartof New journal of chemistry, 2021-02, Vol.45 (5), p.2795-283
issn 1144-0546
1369-9261
language eng
recordid cdi_rsc_primary_d0nj05088a
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Capacitance
Cations
Cetyltrimethylammonium bromide
Cobalt oxides
Depletion
Electroactive materials
Electrode materials
Electrodes
Electron microscopy
Emission analysis
Energy conversion efficiency
Energy storage
Field emission microscopy
Microscopy
Morphology
Nanoparticles
Sodium dodecyl sulfate
Storage systems
Surfactants
Synthesis
Wind power
X ray powder diffraction
title An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20anionic%20and%20cationic%20surfactant-assisted%20hydrothermal%20synthesis%20of%20cobalt%20oxide%20nanoparticles%20as%20the%20active%20electrode%20material%20for%20supercapacitors&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Samal,%20R.%20R&rft.date=2021-02-10&rft.volume=45&rft.issue=5&rft.spage=2795&rft.epage=283&rft.pages=2795-283&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/d0nj05088a&rft_dat=%3Cproquest_rsc_p%3E2487696495%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487696495&rft_id=info:pmid/&rfr_iscdi=true