An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors
The depletion of the traditional fuels and unavoidable seasonal intermittence in solar/wind energy has made an urgent call to develop suitable energy conversion and storage systems. Since both the efficiency and cost of these systems are greatly impacted by electroactive materials, designing an effi...
Gespeichert in:
Veröffentlicht in: | New journal of chemistry 2021-02, Vol.45 (5), p.2795-283 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 283 |
---|---|
container_issue | 5 |
container_start_page | 2795 |
container_title | New journal of chemistry |
container_volume | 45 |
creator | Samal, R. R Samantara, Aneeya K Mahalik, S Behera, J. N Dash, B Sanjay, K |
description | The depletion of the traditional fuels and unavoidable seasonal intermittence in solar/wind energy has made an urgent call to develop suitable energy conversion and storage systems. Since both the efficiency and cost of these systems are greatly impacted by electroactive materials, designing an efficient material through a scalable methodology is indispensable. Keeping these things in mind, we demonstrated the synthesis of Co
3
O
4
nanoflakes
via
the anionic (cetyl trimethylammonium bromide; CTAB) and cationic (sodium lauryl sulphate; SLS) surfactant-assisted hydrothermal method at different annealing temperatures (350 °C and 500 °C). The uniform surface morphology and crystallinity of the as-synthesized nanoflakes were analysed
via
field emission scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction techniques. Further, the electrochemical charge storage performances of these nanoflakes were explored in a three-electrode electrochemical measurement. The CTAB-assisted Co
3
O
4
showed an impressive charge storage performance in terms of higher specific capacitance (777.45 F g
−1
), energy (32.66 W h kg
−1
) and power (39.8 kW kg
−1
) densities (
E
D
and
P
D
) compared to that derived through SLS. Further, the CTAB-500 °C showed better cyclic durability with 83% retention of the initial capacitance after 5000 repeated cycles. Therefore, we presume that the present synthetic strategy will be a scalable and efficient method for the synthesis of Co
3
O
4
that can be used as a future energy storage material for sustainability.
Schematic representation of surfactant action for synthesis of cobalt hydroxide and oxide. |
doi_str_mv | 10.1039/d0nj05088a |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0nj05088a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487696495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-1765647550b034ef93defef4c6ec8d237c14ec95b183b269d1f7bd20c1294b653</originalsourceid><addsrcrecordid>eNpFkU9LAzEQxYMoWKsX70LAm7Ca7Gazm2PxvxS96HnJJhOask3WJBX7Qfy-plb09GaYH-8xMwidUnJJSSWuNHFLUpO2lXtoQisuClFyup9rylhBasYP0VGMS0IobTidoK-Zw9JZ76zKqrGSadfEdTBSJelSIWO0MYHGi40OPi0grOSA48blMk-wN1j5Xg4J-0-rATvp_ChDsmqAiGXEmcPZy34AhgFUCj5TK5kg2GxkfMhpIwQlR6ls8iEeowMjhwgnvzpFb3e3r9cPxfzl_vF6Ni9U2dJU5BVqzpq6Jj2pGBhRaTBgmOKgWl1WjaIMlKh72lZ9yYWmpul1SRQtBet5XU3R-c53DP59DTF1S78OLkd2JWsbLjgTW-piR6ngYwxgujHYlQybjpJue_buhjw__Zx9luGzHRyi-uP-31J9AxaUgv0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487696495</pqid></control><display><type>article</type><title>An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Samal, R. R ; Samantara, Aneeya K ; Mahalik, S ; Behera, J. N ; Dash, B ; Sanjay, K</creator><creatorcontrib>Samal, R. R ; Samantara, Aneeya K ; Mahalik, S ; Behera, J. N ; Dash, B ; Sanjay, K</creatorcontrib><description>The depletion of the traditional fuels and unavoidable seasonal intermittence in solar/wind energy has made an urgent call to develop suitable energy conversion and storage systems. Since both the efficiency and cost of these systems are greatly impacted by electroactive materials, designing an efficient material through a scalable methodology is indispensable. Keeping these things in mind, we demonstrated the synthesis of Co
3
O
4
nanoflakes
via
the anionic (cetyl trimethylammonium bromide; CTAB) and cationic (sodium lauryl sulphate; SLS) surfactant-assisted hydrothermal method at different annealing temperatures (350 °C and 500 °C). The uniform surface morphology and crystallinity of the as-synthesized nanoflakes were analysed
via
field emission scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction techniques. Further, the electrochemical charge storage performances of these nanoflakes were explored in a three-electrode electrochemical measurement. The CTAB-assisted Co
3
O
4
showed an impressive charge storage performance in terms of higher specific capacitance (777.45 F g
−1
), energy (32.66 W h kg
−1
) and power (39.8 kW kg
−1
) densities (
E
D
and
P
D
) compared to that derived through SLS. Further, the CTAB-500 °C showed better cyclic durability with 83% retention of the initial capacitance after 5000 repeated cycles. Therefore, we presume that the present synthetic strategy will be a scalable and efficient method for the synthesis of Co
3
O
4
that can be used as a future energy storage material for sustainability.
Schematic representation of surfactant action for synthesis of cobalt hydroxide and oxide.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/d0nj05088a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Capacitance ; Cations ; Cetyltrimethylammonium bromide ; Cobalt oxides ; Depletion ; Electroactive materials ; Electrode materials ; Electrodes ; Electron microscopy ; Emission analysis ; Energy conversion efficiency ; Energy storage ; Field emission microscopy ; Microscopy ; Morphology ; Nanoparticles ; Sodium dodecyl sulfate ; Storage systems ; Surfactants ; Synthesis ; Wind power ; X ray powder diffraction</subject><ispartof>New journal of chemistry, 2021-02, Vol.45 (5), p.2795-283</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-1765647550b034ef93defef4c6ec8d237c14ec95b183b269d1f7bd20c1294b653</citedby><cites>FETCH-LOGICAL-c281t-1765647550b034ef93defef4c6ec8d237c14ec95b183b269d1f7bd20c1294b653</cites><orcidid>0000-0001-5448-271X ; 0000-0001-6743-4493 ; 0000-0001-7686-0427 ; 0000-0003-1161-588X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Samal, R. R</creatorcontrib><creatorcontrib>Samantara, Aneeya K</creatorcontrib><creatorcontrib>Mahalik, S</creatorcontrib><creatorcontrib>Behera, J. N</creatorcontrib><creatorcontrib>Dash, B</creatorcontrib><creatorcontrib>Sanjay, K</creatorcontrib><title>An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors</title><title>New journal of chemistry</title><description>The depletion of the traditional fuels and unavoidable seasonal intermittence in solar/wind energy has made an urgent call to develop suitable energy conversion and storage systems. Since both the efficiency and cost of these systems are greatly impacted by electroactive materials, designing an efficient material through a scalable methodology is indispensable. Keeping these things in mind, we demonstrated the synthesis of Co
3
O
4
nanoflakes
via
the anionic (cetyl trimethylammonium bromide; CTAB) and cationic (sodium lauryl sulphate; SLS) surfactant-assisted hydrothermal method at different annealing temperatures (350 °C and 500 °C). The uniform surface morphology and crystallinity of the as-synthesized nanoflakes were analysed
via
field emission scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction techniques. Further, the electrochemical charge storage performances of these nanoflakes were explored in a three-electrode electrochemical measurement. The CTAB-assisted Co
3
O
4
showed an impressive charge storage performance in terms of higher specific capacitance (777.45 F g
−1
), energy (32.66 W h kg
−1
) and power (39.8 kW kg
−1
) densities (
E
D
and
P
D
) compared to that derived through SLS. Further, the CTAB-500 °C showed better cyclic durability with 83% retention of the initial capacitance after 5000 repeated cycles. Therefore, we presume that the present synthetic strategy will be a scalable and efficient method for the synthesis of Co
3
O
4
that can be used as a future energy storage material for sustainability.
Schematic representation of surfactant action for synthesis of cobalt hydroxide and oxide.</description><subject>Capacitance</subject><subject>Cations</subject><subject>Cetyltrimethylammonium bromide</subject><subject>Cobalt oxides</subject><subject>Depletion</subject><subject>Electroactive materials</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron microscopy</subject><subject>Emission analysis</subject><subject>Energy conversion efficiency</subject><subject>Energy storage</subject><subject>Field emission microscopy</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Sodium dodecyl sulfate</subject><subject>Storage systems</subject><subject>Surfactants</subject><subject>Synthesis</subject><subject>Wind power</subject><subject>X ray powder diffraction</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkU9LAzEQxYMoWKsX70LAm7Ca7Gazm2PxvxS96HnJJhOask3WJBX7Qfy-plb09GaYH-8xMwidUnJJSSWuNHFLUpO2lXtoQisuClFyup9rylhBasYP0VGMS0IobTidoK-Zw9JZ76zKqrGSadfEdTBSJelSIWO0MYHGi40OPi0grOSA48blMk-wN1j5Xg4J-0-rATvp_ChDsmqAiGXEmcPZy34AhgFUCj5TK5kg2GxkfMhpIwQlR6ls8iEeowMjhwgnvzpFb3e3r9cPxfzl_vF6Ni9U2dJU5BVqzpq6Jj2pGBhRaTBgmOKgWl1WjaIMlKh72lZ9yYWmpul1SRQtBet5XU3R-c53DP59DTF1S78OLkd2JWsbLjgTW-piR6ngYwxgujHYlQybjpJue_buhjw__Zx9luGzHRyi-uP-31J9AxaUgv0</recordid><startdate>20210210</startdate><enddate>20210210</enddate><creator>Samal, R. R</creator><creator>Samantara, Aneeya K</creator><creator>Mahalik, S</creator><creator>Behera, J. N</creator><creator>Dash, B</creator><creator>Sanjay, K</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope><orcidid>https://orcid.org/0000-0001-5448-271X</orcidid><orcidid>https://orcid.org/0000-0001-6743-4493</orcidid><orcidid>https://orcid.org/0000-0001-7686-0427</orcidid><orcidid>https://orcid.org/0000-0003-1161-588X</orcidid></search><sort><creationdate>20210210</creationdate><title>An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors</title><author>Samal, R. R ; Samantara, Aneeya K ; Mahalik, S ; Behera, J. N ; Dash, B ; Sanjay, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-1765647550b034ef93defef4c6ec8d237c14ec95b183b269d1f7bd20c1294b653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capacitance</topic><topic>Cations</topic><topic>Cetyltrimethylammonium bromide</topic><topic>Cobalt oxides</topic><topic>Depletion</topic><topic>Electroactive materials</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron microscopy</topic><topic>Emission analysis</topic><topic>Energy conversion efficiency</topic><topic>Energy storage</topic><topic>Field emission microscopy</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Sodium dodecyl sulfate</topic><topic>Storage systems</topic><topic>Surfactants</topic><topic>Synthesis</topic><topic>Wind power</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samal, R. R</creatorcontrib><creatorcontrib>Samantara, Aneeya K</creatorcontrib><creatorcontrib>Mahalik, S</creatorcontrib><creatorcontrib>Behera, J. N</creatorcontrib><creatorcontrib>Dash, B</creatorcontrib><creatorcontrib>Sanjay, K</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samal, R. R</au><au>Samantara, Aneeya K</au><au>Mahalik, S</au><au>Behera, J. N</au><au>Dash, B</au><au>Sanjay, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors</atitle><jtitle>New journal of chemistry</jtitle><date>2021-02-10</date><risdate>2021</risdate><volume>45</volume><issue>5</issue><spage>2795</spage><epage>283</epage><pages>2795-283</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>The depletion of the traditional fuels and unavoidable seasonal intermittence in solar/wind energy has made an urgent call to develop suitable energy conversion and storage systems. Since both the efficiency and cost of these systems are greatly impacted by electroactive materials, designing an efficient material through a scalable methodology is indispensable. Keeping these things in mind, we demonstrated the synthesis of Co
3
O
4
nanoflakes
via
the anionic (cetyl trimethylammonium bromide; CTAB) and cationic (sodium lauryl sulphate; SLS) surfactant-assisted hydrothermal method at different annealing temperatures (350 °C and 500 °C). The uniform surface morphology and crystallinity of the as-synthesized nanoflakes were analysed
via
field emission scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction techniques. Further, the electrochemical charge storage performances of these nanoflakes were explored in a three-electrode electrochemical measurement. The CTAB-assisted Co
3
O
4
showed an impressive charge storage performance in terms of higher specific capacitance (777.45 F g
−1
), energy (32.66 W h kg
−1
) and power (39.8 kW kg
−1
) densities (
E
D
and
P
D
) compared to that derived through SLS. Further, the CTAB-500 °C showed better cyclic durability with 83% retention of the initial capacitance after 5000 repeated cycles. Therefore, we presume that the present synthetic strategy will be a scalable and efficient method for the synthesis of Co
3
O
4
that can be used as a future energy storage material for sustainability.
Schematic representation of surfactant action for synthesis of cobalt hydroxide and oxide.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nj05088a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5448-271X</orcidid><orcidid>https://orcid.org/0000-0001-6743-4493</orcidid><orcidid>https://orcid.org/0000-0001-7686-0427</orcidid><orcidid>https://orcid.org/0000-0003-1161-588X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1144-0546 |
ispartof | New journal of chemistry, 2021-02, Vol.45 (5), p.2795-283 |
issn | 1144-0546 1369-9261 |
language | eng |
recordid | cdi_rsc_primary_d0nj05088a |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Capacitance Cations Cetyltrimethylammonium bromide Cobalt oxides Depletion Electroactive materials Electrode materials Electrodes Electron microscopy Emission analysis Energy conversion efficiency Energy storage Field emission microscopy Microscopy Morphology Nanoparticles Sodium dodecyl sulfate Storage systems Surfactants Synthesis Wind power X ray powder diffraction |
title | An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20anionic%20and%20cationic%20surfactant-assisted%20hydrothermal%20synthesis%20of%20cobalt%20oxide%20nanoparticles%20as%20the%20active%20electrode%20material%20for%20supercapacitors&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Samal,%20R.%20R&rft.date=2021-02-10&rft.volume=45&rft.issue=5&rft.spage=2795&rft.epage=283&rft.pages=2795-283&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/d0nj05088a&rft_dat=%3Cproquest_rsc_p%3E2487696495%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487696495&rft_id=info:pmid/&rfr_iscdi=true |