Phase stability of the layered oxide, CaMnO; probing interlayer shearing at high pressure

We have performed high-pressure neutron diffraction studies on the layered oxide, Ca 2 Mn 3 O 8 . Studies up to approximately 6 GPa at temperatures of 120 and 290 K demonstrate that there are no structural phase transitions within this pressure range. Fits of the unit-cell volume to a Birch-Murngaha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials advances 2020-09, Vol.1 (6), p.1841-1848
Hauptverfasser: Vera Stimpson, Laura J, Etherdo-Sibley, Kevin J. W, Ridley, Christopher J, Bull, Craig L, Arnold, Donna C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1848
container_issue 6
container_start_page 1841
container_title Materials advances
container_volume 1
creator Vera Stimpson, Laura J
Etherdo-Sibley, Kevin J. W
Ridley, Christopher J
Bull, Craig L
Arnold, Donna C
description We have performed high-pressure neutron diffraction studies on the layered oxide, Ca 2 Mn 3 O 8 . Studies up to approximately 6 GPa at temperatures of 120 and 290 K demonstrate that there are no structural phase transitions within this pressure range. Fits of the unit-cell volume to a Birch-Murngahan equation of state gives values for the bulk modulus of 137(2) GPa and 130(2) GPa at temperatures of 290 K and 120 K respectively possibly suggesting that Ca 2 Mn 3 O 8 is more compressible at lower temperature. Furthermore, compression along the principal axes are anisotropic on the local scale. Comparison of individual bond lengths and bond angle environments further demonstrate that compression is complex and likely results in a shearing of the layers. We have performed high-pressure neutron diffraction studies on the layered oxide, Ca 2 Mn 3 O 8 .
doi_str_mv 10.1039/d0ma00464b
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d0ma00464b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d0ma00464b</sourcerecordid><originalsourceid>FETCH-rsc_primary_d0ma00464b3</originalsourceid><addsrcrecordid>eNqFjjGLwkAQRhdBOFGb6w_G3ujEjYFgGZRrRAsbqzC5TNyVmISdFcy_1zsO7LT64L1XfEp9hjgLUSfzAi-EGMVR3lODRax1sIww-VBjkTMiLpZhmCTxQB33hoRBPOW2sr6DpgRvGCrq2HEBzc0WPIWUtvVuBa1rclufwNae3V8CYpjcLyMPxp7Mo2GRq-OR6pdUCY__d6i-NutD-h04-claZy_kuux5U7_3k1c-a4tS3wFW5U3v</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase stability of the layered oxide, CaMnO; probing interlayer shearing at high pressure</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Vera Stimpson, Laura J ; Etherdo-Sibley, Kevin J. W ; Ridley, Christopher J ; Bull, Craig L ; Arnold, Donna C</creator><creatorcontrib>Vera Stimpson, Laura J ; Etherdo-Sibley, Kevin J. W ; Ridley, Christopher J ; Bull, Craig L ; Arnold, Donna C</creatorcontrib><description>We have performed high-pressure neutron diffraction studies on the layered oxide, Ca 2 Mn 3 O 8 . Studies up to approximately 6 GPa at temperatures of 120 and 290 K demonstrate that there are no structural phase transitions within this pressure range. Fits of the unit-cell volume to a Birch-Murngahan equation of state gives values for the bulk modulus of 137(2) GPa and 130(2) GPa at temperatures of 290 K and 120 K respectively possibly suggesting that Ca 2 Mn 3 O 8 is more compressible at lower temperature. Furthermore, compression along the principal axes are anisotropic on the local scale. Comparison of individual bond lengths and bond angle environments further demonstrate that compression is complex and likely results in a shearing of the layers. We have performed high-pressure neutron diffraction studies on the layered oxide, Ca 2 Mn 3 O 8 .</description><identifier>EISSN: 2633-5409</identifier><identifier>DOI: 10.1039/d0ma00464b</identifier><language>eng</language><ispartof>Materials advances, 2020-09, Vol.1 (6), p.1841-1848</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Vera Stimpson, Laura J</creatorcontrib><creatorcontrib>Etherdo-Sibley, Kevin J. W</creatorcontrib><creatorcontrib>Ridley, Christopher J</creatorcontrib><creatorcontrib>Bull, Craig L</creatorcontrib><creatorcontrib>Arnold, Donna C</creatorcontrib><title>Phase stability of the layered oxide, CaMnO; probing interlayer shearing at high pressure</title><title>Materials advances</title><description>We have performed high-pressure neutron diffraction studies on the layered oxide, Ca 2 Mn 3 O 8 . Studies up to approximately 6 GPa at temperatures of 120 and 290 K demonstrate that there are no structural phase transitions within this pressure range. Fits of the unit-cell volume to a Birch-Murngahan equation of state gives values for the bulk modulus of 137(2) GPa and 130(2) GPa at temperatures of 290 K and 120 K respectively possibly suggesting that Ca 2 Mn 3 O 8 is more compressible at lower temperature. Furthermore, compression along the principal axes are anisotropic on the local scale. Comparison of individual bond lengths and bond angle environments further demonstrate that compression is complex and likely results in a shearing of the layers. We have performed high-pressure neutron diffraction studies on the layered oxide, Ca 2 Mn 3 O 8 .</description><issn>2633-5409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjjGLwkAQRhdBOFGb6w_G3ujEjYFgGZRrRAsbqzC5TNyVmISdFcy_1zsO7LT64L1XfEp9hjgLUSfzAi-EGMVR3lODRax1sIww-VBjkTMiLpZhmCTxQB33hoRBPOW2sr6DpgRvGCrq2HEBzc0WPIWUtvVuBa1rclufwNae3V8CYpjcLyMPxp7Mo2GRq-OR6pdUCY__d6i-NutD-h04-claZy_kuux5U7_3k1c-a4tS3wFW5U3v</recordid><startdate>20200921</startdate><enddate>20200921</enddate><creator>Vera Stimpson, Laura J</creator><creator>Etherdo-Sibley, Kevin J. W</creator><creator>Ridley, Christopher J</creator><creator>Bull, Craig L</creator><creator>Arnold, Donna C</creator><scope/></search><sort><creationdate>20200921</creationdate><title>Phase stability of the layered oxide, CaMnO; probing interlayer shearing at high pressure</title><author>Vera Stimpson, Laura J ; Etherdo-Sibley, Kevin J. W ; Ridley, Christopher J ; Bull, Craig L ; Arnold, Donna C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d0ma00464b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vera Stimpson, Laura J</creatorcontrib><creatorcontrib>Etherdo-Sibley, Kevin J. W</creatorcontrib><creatorcontrib>Ridley, Christopher J</creatorcontrib><creatorcontrib>Bull, Craig L</creatorcontrib><creatorcontrib>Arnold, Donna C</creatorcontrib><jtitle>Materials advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vera Stimpson, Laura J</au><au>Etherdo-Sibley, Kevin J. W</au><au>Ridley, Christopher J</au><au>Bull, Craig L</au><au>Arnold, Donna C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase stability of the layered oxide, CaMnO; probing interlayer shearing at high pressure</atitle><jtitle>Materials advances</jtitle><date>2020-09-21</date><risdate>2020</risdate><volume>1</volume><issue>6</issue><spage>1841</spage><epage>1848</epage><pages>1841-1848</pages><eissn>2633-5409</eissn><abstract>We have performed high-pressure neutron diffraction studies on the layered oxide, Ca 2 Mn 3 O 8 . Studies up to approximately 6 GPa at temperatures of 120 and 290 K demonstrate that there are no structural phase transitions within this pressure range. Fits of the unit-cell volume to a Birch-Murngahan equation of state gives values for the bulk modulus of 137(2) GPa and 130(2) GPa at temperatures of 290 K and 120 K respectively possibly suggesting that Ca 2 Mn 3 O 8 is more compressible at lower temperature. Furthermore, compression along the principal axes are anisotropic on the local scale. Comparison of individual bond lengths and bond angle environments further demonstrate that compression is complex and likely results in a shearing of the layers. We have performed high-pressure neutron diffraction studies on the layered oxide, Ca 2 Mn 3 O 8 .</abstract><doi>10.1039/d0ma00464b</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2633-5409
ispartof Materials advances, 2020-09, Vol.1 (6), p.1841-1848
issn 2633-5409
language eng
recordid cdi_rsc_primary_d0ma00464b
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Phase stability of the layered oxide, CaMnO; probing interlayer shearing at high pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20stability%20of%20the%20layered%20oxide,%20CaMnO;%20probing%20interlayer%20shearing%20at%20high%20pressure&rft.jtitle=Materials%20advances&rft.au=Vera%20Stimpson,%20Laura%20J&rft.date=2020-09-21&rft.volume=1&rft.issue=6&rft.spage=1841&rft.epage=1848&rft.pages=1841-1848&rft.eissn=2633-5409&rft_id=info:doi/10.1039/d0ma00464b&rft_dat=%3Crsc%3Ed0ma00464b%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true