Synthesis of multivitamin-loaded heat stable liposomes from milk fat globule membrane phospholipids by using a supercritical-CO based system

Inspired by the heat stability of milk, where fat globules are coated by the milk fat globule membrane (MFGM), heat stable liposomes loaded with multivitamins were successfully synthesized from MFGM phospholipid concentrate. The MFGM phospholipids were first isolated from buttermilk powder, an under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2020-08, Vol.22 (16), p.5345-5356
Hauptverfasser: Jash, Apratim, Ubeyitogullari, Ali, Rizvi, Syed S. H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5356
container_issue 16
container_start_page 5345
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 22
creator Jash, Apratim
Ubeyitogullari, Ali
Rizvi, Syed S. H
description Inspired by the heat stability of milk, where fat globules are coated by the milk fat globule membrane (MFGM), heat stable liposomes loaded with multivitamins were successfully synthesized from MFGM phospholipid concentrate. The MFGM phospholipids were first isolated from buttermilk powder, an undervalued dairy byproduct, by means of sequential pure SC-CO 2 and ethanol-modified SC-CO 2 extraction. The final extract was composed of 75% phospholipids, the highest MFGM phospholipid purity reported so far from buttermilk powder. Extracted MFGM phospholipids concentrate was utilized in liposome synthesis by the rapid expansion of supercritical solution using a venturi-based system (Vent-RESS) for vacuum driven cargo loading. Liposome synthesis was also conducted using sunflower phosphatidylcholine (SFPC) for comparison. To test the performance of the liposomes, vitamins E and C were used as model hydrophobic and hydrophilic bioactives, respectively. MFGM phospholipids mostly produced unilamellar vesicular type liposomes with an average diameter of 533 nm and ζ-potential of −57 mV. The encapsulation efficiency (EE) of vitamins E and C in MFGM liposomes were 77 and 65%, respectively. Even after heating at 90 °C for 30 minutes, MFGM liposomes retained structural integrity as shown in their confocal micrographs, structural characterizations, and EE measurements. In contrast, SFPC liposomes disintegrated at temperatures above 60 °C. Thus, MFGM liposomes have the potential to protect the nutritional and functional properties of bioactive compounds during extended exposure to thermal treatment. This study proposes a green method to extract dairy phospholipids and fabricate liposomes for the delivery of bioactive compounds with application in the food, pharmaceutical, and cosmetic industries with a great potential for scale-up. Inspired by the heat stability of milk, where fat globules are coated by the milk fat globule membrane (MFGM), heat stable liposomes loaded with multivitamins were successfully synthesized from MFGM phospholipid concentrate.
doi_str_mv 10.1039/d0gc01674h
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d0gc01674h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d0gc01674h</sourcerecordid><originalsourceid>FETCH-LOGICAL-r133t-6be8cd5681f53c26898904f2672c5edc996a0088ccad1a9a59fbcb5adde3bb5c3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI5u3AvxAapJ06bNUgZvIMxCXQ-5TqNJW3JSoe_gQ1tQdOfi8B_4Ps6BH6FzSq4oYeLakL0mlDdVd4BWtOKsEGVDDn93Xh6jE4A3QihteLVCn89znzsLHvDgcJxC9h8-y-j7IgzSWIM7KzOGLFWwOPhxgCFawC4NEUcf3rFb8D4Malp4tFEl2Vs8dgMss_jeAFYznsD3eywxTKNNOvnstQzFZouVhOUJzJBtPEVHTgawZz-5Rq93ty-bh-Jpe_-4uXkqEmUsF1zZVpuat9TVTJe8Fa0glSt5U-raGi0El4S0rdbSUClkLZzSqpbGWKZUrdkaXX7fTaB3Y_JRpnn3V91uNG5xLv5z2BepfnJW</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis of multivitamin-loaded heat stable liposomes from milk fat globule membrane phospholipids by using a supercritical-CO based system</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Jash, Apratim ; Ubeyitogullari, Ali ; Rizvi, Syed S. H</creator><creatorcontrib>Jash, Apratim ; Ubeyitogullari, Ali ; Rizvi, Syed S. H</creatorcontrib><description>Inspired by the heat stability of milk, where fat globules are coated by the milk fat globule membrane (MFGM), heat stable liposomes loaded with multivitamins were successfully synthesized from MFGM phospholipid concentrate. The MFGM phospholipids were first isolated from buttermilk powder, an undervalued dairy byproduct, by means of sequential pure SC-CO 2 and ethanol-modified SC-CO 2 extraction. The final extract was composed of 75% phospholipids, the highest MFGM phospholipid purity reported so far from buttermilk powder. Extracted MFGM phospholipids concentrate was utilized in liposome synthesis by the rapid expansion of supercritical solution using a venturi-based system (Vent-RESS) for vacuum driven cargo loading. Liposome synthesis was also conducted using sunflower phosphatidylcholine (SFPC) for comparison. To test the performance of the liposomes, vitamins E and C were used as model hydrophobic and hydrophilic bioactives, respectively. MFGM phospholipids mostly produced unilamellar vesicular type liposomes with an average diameter of 533 nm and ζ-potential of −57 mV. The encapsulation efficiency (EE) of vitamins E and C in MFGM liposomes were 77 and 65%, respectively. Even after heating at 90 °C for 30 minutes, MFGM liposomes retained structural integrity as shown in their confocal micrographs, structural characterizations, and EE measurements. In contrast, SFPC liposomes disintegrated at temperatures above 60 °C. Thus, MFGM liposomes have the potential to protect the nutritional and functional properties of bioactive compounds during extended exposure to thermal treatment. This study proposes a green method to extract dairy phospholipids and fabricate liposomes for the delivery of bioactive compounds with application in the food, pharmaceutical, and cosmetic industries with a great potential for scale-up. Inspired by the heat stability of milk, where fat globules are coated by the milk fat globule membrane (MFGM), heat stable liposomes loaded with multivitamins were successfully synthesized from MFGM phospholipid concentrate.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d0gc01674h</identifier><language>eng</language><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2020-08, Vol.22 (16), p.5345-5356</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Jash, Apratim</creatorcontrib><creatorcontrib>Ubeyitogullari, Ali</creatorcontrib><creatorcontrib>Rizvi, Syed S. H</creatorcontrib><title>Synthesis of multivitamin-loaded heat stable liposomes from milk fat globule membrane phospholipids by using a supercritical-CO based system</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Inspired by the heat stability of milk, where fat globules are coated by the milk fat globule membrane (MFGM), heat stable liposomes loaded with multivitamins were successfully synthesized from MFGM phospholipid concentrate. The MFGM phospholipids were first isolated from buttermilk powder, an undervalued dairy byproduct, by means of sequential pure SC-CO 2 and ethanol-modified SC-CO 2 extraction. The final extract was composed of 75% phospholipids, the highest MFGM phospholipid purity reported so far from buttermilk powder. Extracted MFGM phospholipids concentrate was utilized in liposome synthesis by the rapid expansion of supercritical solution using a venturi-based system (Vent-RESS) for vacuum driven cargo loading. Liposome synthesis was also conducted using sunflower phosphatidylcholine (SFPC) for comparison. To test the performance of the liposomes, vitamins E and C were used as model hydrophobic and hydrophilic bioactives, respectively. MFGM phospholipids mostly produced unilamellar vesicular type liposomes with an average diameter of 533 nm and ζ-potential of −57 mV. The encapsulation efficiency (EE) of vitamins E and C in MFGM liposomes were 77 and 65%, respectively. Even after heating at 90 °C for 30 minutes, MFGM liposomes retained structural integrity as shown in their confocal micrographs, structural characterizations, and EE measurements. In contrast, SFPC liposomes disintegrated at temperatures above 60 °C. Thus, MFGM liposomes have the potential to protect the nutritional and functional properties of bioactive compounds during extended exposure to thermal treatment. This study proposes a green method to extract dairy phospholipids and fabricate liposomes for the delivery of bioactive compounds with application in the food, pharmaceutical, and cosmetic industries with a great potential for scale-up. Inspired by the heat stability of milk, where fat globules are coated by the milk fat globule membrane (MFGM), heat stable liposomes loaded with multivitamins were successfully synthesized from MFGM phospholipid concentrate.</description><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNp9kMtKxDAUhoMoOI5u3AvxAapJ06bNUgZvIMxCXQ-5TqNJW3JSoe_gQ1tQdOfi8B_4Ps6BH6FzSq4oYeLakL0mlDdVd4BWtOKsEGVDDn93Xh6jE4A3QihteLVCn89znzsLHvDgcJxC9h8-y-j7IgzSWIM7KzOGLFWwOPhxgCFawC4NEUcf3rFb8D4Malp4tFEl2Vs8dgMss_jeAFYznsD3eywxTKNNOvnstQzFZouVhOUJzJBtPEVHTgawZz-5Rq93ty-bh-Jpe_-4uXkqEmUsF1zZVpuat9TVTJe8Fa0glSt5U-raGi0El4S0rdbSUClkLZzSqpbGWKZUrdkaXX7fTaB3Y_JRpnn3V91uNG5xLv5z2BepfnJW</recordid><startdate>20200821</startdate><enddate>20200821</enddate><creator>Jash, Apratim</creator><creator>Ubeyitogullari, Ali</creator><creator>Rizvi, Syed S. H</creator><scope/></search><sort><creationdate>20200821</creationdate><title>Synthesis of multivitamin-loaded heat stable liposomes from milk fat globule membrane phospholipids by using a supercritical-CO based system</title><author>Jash, Apratim ; Ubeyitogullari, Ali ; Rizvi, Syed S. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-r133t-6be8cd5681f53c26898904f2672c5edc996a0088ccad1a9a59fbcb5adde3bb5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jash, Apratim</creatorcontrib><creatorcontrib>Ubeyitogullari, Ali</creatorcontrib><creatorcontrib>Rizvi, Syed S. H</creatorcontrib><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jash, Apratim</au><au>Ubeyitogullari, Ali</au><au>Rizvi, Syed S. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of multivitamin-loaded heat stable liposomes from milk fat globule membrane phospholipids by using a supercritical-CO based system</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2020-08-21</date><risdate>2020</risdate><volume>22</volume><issue>16</issue><spage>5345</spage><epage>5356</epage><pages>5345-5356</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Inspired by the heat stability of milk, where fat globules are coated by the milk fat globule membrane (MFGM), heat stable liposomes loaded with multivitamins were successfully synthesized from MFGM phospholipid concentrate. The MFGM phospholipids were first isolated from buttermilk powder, an undervalued dairy byproduct, by means of sequential pure SC-CO 2 and ethanol-modified SC-CO 2 extraction. The final extract was composed of 75% phospholipids, the highest MFGM phospholipid purity reported so far from buttermilk powder. Extracted MFGM phospholipids concentrate was utilized in liposome synthesis by the rapid expansion of supercritical solution using a venturi-based system (Vent-RESS) for vacuum driven cargo loading. Liposome synthesis was also conducted using sunflower phosphatidylcholine (SFPC) for comparison. To test the performance of the liposomes, vitamins E and C were used as model hydrophobic and hydrophilic bioactives, respectively. MFGM phospholipids mostly produced unilamellar vesicular type liposomes with an average diameter of 533 nm and ζ-potential of −57 mV. The encapsulation efficiency (EE) of vitamins E and C in MFGM liposomes were 77 and 65%, respectively. Even after heating at 90 °C for 30 minutes, MFGM liposomes retained structural integrity as shown in their confocal micrographs, structural characterizations, and EE measurements. In contrast, SFPC liposomes disintegrated at temperatures above 60 °C. Thus, MFGM liposomes have the potential to protect the nutritional and functional properties of bioactive compounds during extended exposure to thermal treatment. This study proposes a green method to extract dairy phospholipids and fabricate liposomes for the delivery of bioactive compounds with application in the food, pharmaceutical, and cosmetic industries with a great potential for scale-up. Inspired by the heat stability of milk, where fat globules are coated by the milk fat globule membrane (MFGM), heat stable liposomes loaded with multivitamins were successfully synthesized from MFGM phospholipid concentrate.</abstract><doi>10.1039/d0gc01674h</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2020-08, Vol.22 (16), p.5345-5356
issn 1463-9262
1463-9270
language eng
recordid cdi_rsc_primary_d0gc01674h
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Synthesis of multivitamin-loaded heat stable liposomes from milk fat globule membrane phospholipids by using a supercritical-CO based system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20multivitamin-loaded%20heat%20stable%20liposomes%20from%20milk%20fat%20globule%20membrane%20phospholipids%20by%20using%20a%20supercritical-CO%20based%20system&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Jash,%20Apratim&rft.date=2020-08-21&rft.volume=22&rft.issue=16&rft.spage=5345&rft.epage=5356&rft.pages=5345-5356&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d0gc01674h&rft_dat=%3Crsc%3Ed0gc01674h%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true