Humidity-responsive molecular gate-opening mechanism for gas separation in ultraselective nanocellulose/IL hybrid membranes
Nanofibrillated cellulose (NFC) represents an important class of bio-based nanomaterials that possess favorable properties including hydrophilicity, 1D structure, biodegradability, and surface tunability. Although widely known for its effective gas-barrier attributes due to its inherent crystallinit...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2020-06, Vol.22 (11), p.3546-3557 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3557 |
---|---|
container_issue | 11 |
container_start_page | 3546 |
container_title | Green chemistry : an international journal and green chemistry resource : GC |
container_volume | 22 |
creator | Janakiram, Saravanan Ansaloni, Luca Jin, Soo-Ah Yu, Xinyi Dai, Zhongde Spontak, Richard J Deng, Liyuan |
description | Nanofibrillated cellulose (NFC) represents an important class of bio-based nanomaterials that possess favorable properties including hydrophilicity, 1D structure, biodegradability, and surface tunability. Although widely known for its effective gas-barrier attributes due to its inherent crystallinity and hydrogen-bonding capability, the ability of NFC to form dense films has been of considerable interest in selective gas-separation applications as a viable replacement for synthetic polymers. With precise control of targeted properties at the nanoscale, NFC can likewise be used to enable selective removal of greenhouse gases such as CO
2
. Herein we report a class of "green" hybrid membranes composed of NFC and an ionic liquid (IL), 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]), that together exhibit exceptional separation properties arising from controllable nanoscopic design. With this new class of green membranes, CO
2
/N
2
selectivities as high as ∼370 and CO
2
permeabilities as high as ∼330 Barrer have been obtained at optimal IL loadings and/or humidity levels. The current work demonstrates that size exclusion of a molecular penetrant in a water-swollen NFC membrane matrix relies on the network architecture of partially swollen nanocellulose fibrils to selectively permeate CO
2
through enhanced diffusive pathways. Additionally, the gas-transport and rheological properties of these NFC-fabricated membranes can be precisely tuned through the independent use of humidity as an external control parameter.
A class of "green" hybrid membranes composed of nanocellulose and an ionic liquid exhibits exceptional separation properties arising from a humidity-responsive size-exclusive "gate" that allows selective CO
2
permeation. |
doi_str_mv | 10.1039/d0gc00544d |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0gc00544d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410335021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-531b178206ab476bed854f3ec98885211243f90a806809f9671bf38863f25ee93</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoqNOLdyHiTajLjzZNj7LpNhh40XNJ05ct0iY1aYXhP2_nRG-e3oPv530ffBC6ouSeEl5Ma7LRhGRpWh-hM5oKnhQsJ8e_u2Cn6DzGN0IozUV6hj6XQ2tr2--SALHzLtoPwK1vQA-NCnijekh8B866DW5Bb5WzscXG76OII3QqqN56h63DQ9MHFWG87fctTjmvoWmGxkeYrtZ4u6uCrceatgrKQbxAJ0Y1ES5_5gS9Pj2-zJbJ-nmxmj2sE80l6ZOM04rmkhGhqjQXFdQySw0HXUgpM0YpS7kpiJJESFKYQuS0MlxKwQ3LAAo-QbeH3i749wFiX775IbjxZcnSURvPCKMjdXegdPAxBjBlF2yrwq6kpNzLLedkMfuWOx_h6wMcov7l_uSP-c1_ednVhn8BVBmDKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410335021</pqid></control><display><type>article</type><title>Humidity-responsive molecular gate-opening mechanism for gas separation in ultraselective nanocellulose/IL hybrid membranes</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Janakiram, Saravanan ; Ansaloni, Luca ; Jin, Soo-Ah ; Yu, Xinyi ; Dai, Zhongde ; Spontak, Richard J ; Deng, Liyuan</creator><creatorcontrib>Janakiram, Saravanan ; Ansaloni, Luca ; Jin, Soo-Ah ; Yu, Xinyi ; Dai, Zhongde ; Spontak, Richard J ; Deng, Liyuan</creatorcontrib><description>Nanofibrillated cellulose (NFC) represents an important class of bio-based nanomaterials that possess favorable properties including hydrophilicity, 1D structure, biodegradability, and surface tunability. Although widely known for its effective gas-barrier attributes due to its inherent crystallinity and hydrogen-bonding capability, the ability of NFC to form dense films has been of considerable interest in selective gas-separation applications as a viable replacement for synthetic polymers. With precise control of targeted properties at the nanoscale, NFC can likewise be used to enable selective removal of greenhouse gases such as CO
2
. Herein we report a class of "green" hybrid membranes composed of NFC and an ionic liquid (IL), 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]), that together exhibit exceptional separation properties arising from controllable nanoscopic design. With this new class of green membranes, CO
2
/N
2
selectivities as high as ∼370 and CO
2
permeabilities as high as ∼330 Barrer have been obtained at optimal IL loadings and/or humidity levels. The current work demonstrates that size exclusion of a molecular penetrant in a water-swollen NFC membrane matrix relies on the network architecture of partially swollen nanocellulose fibrils to selectively permeate CO
2
through enhanced diffusive pathways. Additionally, the gas-transport and rheological properties of these NFC-fabricated membranes can be precisely tuned through the independent use of humidity as an external control parameter.
A class of "green" hybrid membranes composed of nanocellulose and an ionic liquid exhibits exceptional separation properties arising from a humidity-responsive size-exclusive "gate" that allows selective CO
2
permeation.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d0gc00544d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acetic acid ; Biodegradability ; Biodegradation ; Carbon dioxide ; Cellulose ; Computer architecture ; Fibrils ; Gas separation ; Gas transport ; Gases ; Green chemistry ; Greenhouse effect ; Greenhouse gases ; Humidity ; Hydrogen bonding ; Ionic liquids ; Membranes ; Nanomaterials ; Nanotechnology ; Polymers ; Properties (attributes) ; Rheological properties ; Stability</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2020-06, Vol.22 (11), p.3546-3557</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-531b178206ab476bed854f3ec98885211243f90a806809f9671bf38863f25ee93</citedby><cites>FETCH-LOGICAL-c380t-531b178206ab476bed854f3ec98885211243f90a806809f9671bf38863f25ee93</cites><orcidid>0000-0003-4785-4620 ; 0000-0001-8458-0038 ; 0000-0003-2075-4144 ; 0000-0002-4930-0253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Janakiram, Saravanan</creatorcontrib><creatorcontrib>Ansaloni, Luca</creatorcontrib><creatorcontrib>Jin, Soo-Ah</creatorcontrib><creatorcontrib>Yu, Xinyi</creatorcontrib><creatorcontrib>Dai, Zhongde</creatorcontrib><creatorcontrib>Spontak, Richard J</creatorcontrib><creatorcontrib>Deng, Liyuan</creatorcontrib><title>Humidity-responsive molecular gate-opening mechanism for gas separation in ultraselective nanocellulose/IL hybrid membranes</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Nanofibrillated cellulose (NFC) represents an important class of bio-based nanomaterials that possess favorable properties including hydrophilicity, 1D structure, biodegradability, and surface tunability. Although widely known for its effective gas-barrier attributes due to its inherent crystallinity and hydrogen-bonding capability, the ability of NFC to form dense films has been of considerable interest in selective gas-separation applications as a viable replacement for synthetic polymers. With precise control of targeted properties at the nanoscale, NFC can likewise be used to enable selective removal of greenhouse gases such as CO
2
. Herein we report a class of "green" hybrid membranes composed of NFC and an ionic liquid (IL), 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]), that together exhibit exceptional separation properties arising from controllable nanoscopic design. With this new class of green membranes, CO
2
/N
2
selectivities as high as ∼370 and CO
2
permeabilities as high as ∼330 Barrer have been obtained at optimal IL loadings and/or humidity levels. The current work demonstrates that size exclusion of a molecular penetrant in a water-swollen NFC membrane matrix relies on the network architecture of partially swollen nanocellulose fibrils to selectively permeate CO
2
through enhanced diffusive pathways. Additionally, the gas-transport and rheological properties of these NFC-fabricated membranes can be precisely tuned through the independent use of humidity as an external control parameter.
A class of "green" hybrid membranes composed of nanocellulose and an ionic liquid exhibits exceptional separation properties arising from a humidity-responsive size-exclusive "gate" that allows selective CO
2
permeation.</description><subject>Acetic acid</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Carbon dioxide</subject><subject>Cellulose</subject><subject>Computer architecture</subject><subject>Fibrils</subject><subject>Gas separation</subject><subject>Gas transport</subject><subject>Gases</subject><subject>Green chemistry</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Humidity</subject><subject>Hydrogen bonding</subject><subject>Ionic liquids</subject><subject>Membranes</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Polymers</subject><subject>Properties (attributes)</subject><subject>Rheological properties</subject><subject>Stability</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4MoqNOLdyHiTajLjzZNj7LpNhh40XNJ05ct0iY1aYXhP2_nRG-e3oPv530ffBC6ouSeEl5Ma7LRhGRpWh-hM5oKnhQsJ8e_u2Cn6DzGN0IozUV6hj6XQ2tr2--SALHzLtoPwK1vQA-NCnijekh8B866DW5Bb5WzscXG76OII3QqqN56h63DQ9MHFWG87fctTjmvoWmGxkeYrtZ4u6uCrceatgrKQbxAJ0Y1ES5_5gS9Pj2-zJbJ-nmxmj2sE80l6ZOM04rmkhGhqjQXFdQySw0HXUgpM0YpS7kpiJJESFKYQuS0MlxKwQ3LAAo-QbeH3i749wFiX775IbjxZcnSURvPCKMjdXegdPAxBjBlF2yrwq6kpNzLLedkMfuWOx_h6wMcov7l_uSP-c1_ednVhn8BVBmDKg</recordid><startdate>20200608</startdate><enddate>20200608</enddate><creator>Janakiram, Saravanan</creator><creator>Ansaloni, Luca</creator><creator>Jin, Soo-Ah</creator><creator>Yu, Xinyi</creator><creator>Dai, Zhongde</creator><creator>Spontak, Richard J</creator><creator>Deng, Liyuan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4785-4620</orcidid><orcidid>https://orcid.org/0000-0001-8458-0038</orcidid><orcidid>https://orcid.org/0000-0003-2075-4144</orcidid><orcidid>https://orcid.org/0000-0002-4930-0253</orcidid></search><sort><creationdate>20200608</creationdate><title>Humidity-responsive molecular gate-opening mechanism for gas separation in ultraselective nanocellulose/IL hybrid membranes</title><author>Janakiram, Saravanan ; Ansaloni, Luca ; Jin, Soo-Ah ; Yu, Xinyi ; Dai, Zhongde ; Spontak, Richard J ; Deng, Liyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-531b178206ab476bed854f3ec98885211243f90a806809f9671bf38863f25ee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetic acid</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Carbon dioxide</topic><topic>Cellulose</topic><topic>Computer architecture</topic><topic>Fibrils</topic><topic>Gas separation</topic><topic>Gas transport</topic><topic>Gases</topic><topic>Green chemistry</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Humidity</topic><topic>Hydrogen bonding</topic><topic>Ionic liquids</topic><topic>Membranes</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Polymers</topic><topic>Properties (attributes)</topic><topic>Rheological properties</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janakiram, Saravanan</creatorcontrib><creatorcontrib>Ansaloni, Luca</creatorcontrib><creatorcontrib>Jin, Soo-Ah</creatorcontrib><creatorcontrib>Yu, Xinyi</creatorcontrib><creatorcontrib>Dai, Zhongde</creatorcontrib><creatorcontrib>Spontak, Richard J</creatorcontrib><creatorcontrib>Deng, Liyuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janakiram, Saravanan</au><au>Ansaloni, Luca</au><au>Jin, Soo-Ah</au><au>Yu, Xinyi</au><au>Dai, Zhongde</au><au>Spontak, Richard J</au><au>Deng, Liyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Humidity-responsive molecular gate-opening mechanism for gas separation in ultraselective nanocellulose/IL hybrid membranes</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2020-06-08</date><risdate>2020</risdate><volume>22</volume><issue>11</issue><spage>3546</spage><epage>3557</epage><pages>3546-3557</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Nanofibrillated cellulose (NFC) represents an important class of bio-based nanomaterials that possess favorable properties including hydrophilicity, 1D structure, biodegradability, and surface tunability. Although widely known for its effective gas-barrier attributes due to its inherent crystallinity and hydrogen-bonding capability, the ability of NFC to form dense films has been of considerable interest in selective gas-separation applications as a viable replacement for synthetic polymers. With precise control of targeted properties at the nanoscale, NFC can likewise be used to enable selective removal of greenhouse gases such as CO
2
. Herein we report a class of "green" hybrid membranes composed of NFC and an ionic liquid (IL), 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]), that together exhibit exceptional separation properties arising from controllable nanoscopic design. With this new class of green membranes, CO
2
/N
2
selectivities as high as ∼370 and CO
2
permeabilities as high as ∼330 Barrer have been obtained at optimal IL loadings and/or humidity levels. The current work demonstrates that size exclusion of a molecular penetrant in a water-swollen NFC membrane matrix relies on the network architecture of partially swollen nanocellulose fibrils to selectively permeate CO
2
through enhanced diffusive pathways. Additionally, the gas-transport and rheological properties of these NFC-fabricated membranes can be precisely tuned through the independent use of humidity as an external control parameter.
A class of "green" hybrid membranes composed of nanocellulose and an ionic liquid exhibits exceptional separation properties arising from a humidity-responsive size-exclusive "gate" that allows selective CO
2
permeation.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0gc00544d</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4785-4620</orcidid><orcidid>https://orcid.org/0000-0001-8458-0038</orcidid><orcidid>https://orcid.org/0000-0003-2075-4144</orcidid><orcidid>https://orcid.org/0000-0002-4930-0253</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9262 |
ispartof | Green chemistry : an international journal and green chemistry resource : GC, 2020-06, Vol.22 (11), p.3546-3557 |
issn | 1463-9262 1463-9270 |
language | eng |
recordid | cdi_rsc_primary_d0gc00544d |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Acetic acid Biodegradability Biodegradation Carbon dioxide Cellulose Computer architecture Fibrils Gas separation Gas transport Gases Green chemistry Greenhouse effect Greenhouse gases Humidity Hydrogen bonding Ionic liquids Membranes Nanomaterials Nanotechnology Polymers Properties (attributes) Rheological properties Stability |
title | Humidity-responsive molecular gate-opening mechanism for gas separation in ultraselective nanocellulose/IL hybrid membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Humidity-responsive%20molecular%20gate-opening%20mechanism%20for%20gas%20separation%20in%20ultraselective%20nanocellulose/IL%20hybrid%20membranes&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Janakiram,%20Saravanan&rft.date=2020-06-08&rft.volume=22&rft.issue=11&rft.spage=3546&rft.epage=3557&rft.pages=3546-3557&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d0gc00544d&rft_dat=%3Cproquest_rsc_p%3E2410335021%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410335021&rft_id=info:pmid/&rfr_iscdi=true |