Fabrication and characterization of lentil protein gels from fibrillar aggregates and the gelling mechanism study
Heat-induced aggregation and gelation in lentil protein isolate (LPI) were studied over pH levels (pH 2-9), protein concentration (1-13%, w/w), and heating time (0.5-16 h). The LPI gels were formed from both fibrillar and particulate aggregates at pH 2 and 7, respectively. The gels formed from fibri...
Gespeichert in:
Veröffentlicht in: | Food & function 2020-11, Vol.11 (11), p.1114-1125 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heat-induced aggregation and gelation in lentil protein isolate (LPI) were studied over pH levels (pH 2-9), protein concentration (1-13%, w/w), and heating time (0.5-16 h). The LPI gels were formed from both fibrillar and particulate aggregates at pH 2 and 7, respectively. The gels formed from fibrillar aggregates at pH 2 were translucent and showed homogeneous and highly interconnected networks. While lentil protein showed weak gelling capacity, the gels prepared from LPI aggregates possessed good mechanical properties, and the optimized gel demonstrated a compressive strength of 2.37 kPa and a water holding capacity of 80.62%. The gelling mechanism study suggests that the high aspect ratio allowed fibrillar aggregates to build a higher level of structures with positive characteristics along with other attractive interactions including hydrophobic interactions and disulfide bonds to build strong gels. Therefore, this research has developed a new strategy to prepare improved lentil protein gels for food texturization from LPI fibrillar aggregates.
Lentil protein fibrillar aggregates were used to form gels of fine and highly interconnected networks with good mechanical properties at pH 2. |
---|---|
ISSN: | 2042-6496 2042-650X |
DOI: | 10.1039/d0fo02089c |