Sustainable bio-succinic acid production: superstructure optimization, techno-economic, and lifecycle assessment
The production of bio-succinic acid (bio-SA) from biomass has the potential to partially replace some petrochemicals, reduce climate change by capturing carbon dioxide, and provide a cleaner environment by managing waste streams. This study evaluates the economics, environmental impact, risk assessm...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2021-06, Vol.14 (6), p.3542-3558 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3558 |
---|---|
container_issue | 6 |
container_start_page | 3542 |
container_title | Energy & environmental science |
container_volume | 14 |
creator | Dickson, Rofice Mancini, Enrico Garg, Nipun Woodley, John M Gernaey, Krist V Pinelo, Manuel Liu, Jay Mansouri, Seyed Soheil |
description | The production of bio-succinic acid (bio-SA) from biomass has the potential to partially replace some petrochemicals, reduce climate change by capturing carbon dioxide, and provide a cleaner environment by managing waste streams. This study evaluates the economics, environmental impact, risk assessment, and optimal processing route of bio-SA production from multiple feedstocks (first, second, and third-generation), including (1) glucose, (2) corn stover, (3) glycerol, and (4) seaweed. A superstructure-based optimization model consisting of 39 processing alternatives with a technology readiness level of 7-9 is developed, and the optimal topology for bio-SA production by maximization of the net present value under deterministic and stochastic conditions is identified. Once optimization is completed, the framework provides clear guidance for multi-criteria analysis, including the technical, economical, and environmental aspects of the biorefinery. The results indicate that glycerol is the best feedstock and corn stover is the second to best, producing bio-SA at selling prices of 1.6-1.9 USD per kg and 1.7-2.0 USD per kg, respectively, through their optimal processing pathways.
Saccharina japonica
(seaweed) is less suitable for large-scale bio-SA production due to the high cost of seaweed and the inability of enzymes to hydrolyze alginate, which is one of the major carbohydrate fractions (25-30 wt%) of this feedstock. The environmental results indicate that the optimal pathway from glycerol is the most environmentally friendly process, followed by optimal processing pathways from substrates such as corn stover, glucose, and
S. japonica
.
A multi-criteria strategy to identify sustainable bio-succinic acid production processes on a commercial scale. |
doi_str_mv | 10.1039/d0ee03545a |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0ee03545a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541654150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-5a6b55d25a13452b6f6a8725eebad1e513d3eae3dc6de00b0390b70e0e3c2d193</originalsourceid><addsrcrecordid>eNpFkM1LxDAQxYsouK5evAsBb7LVSdOk1pus6wcseFDPJU2mmGWb1CQ9rH-9WdePwzAzzI83vJdlpxQuKbD6SgMiMF5yuZdNaMXLnFcg9n9nUReH2VEIKwBRQFVPsuFlDFEaK9s1kta4PIxKGWsUkcpoMninRxWNszckjAP6EH3aR4_EDdH05lNujzMSUb1bl6Ny1vVGzYi0mqxNh2qjkrIMAUPo0cbj7KCT64AnP32avd0vXueP-fL54Wl-u8wV4zTmXIqWc11wSVnJi1Z0Ql5XBUdspabIKdMMJTKthEaANpmHtgIEZKrQtGbT7Hynmyx8jBhis3Kjt-llU_CSilQcEnWxo5R3IXjsmsGbXvpNQ6HZJtrcwWLxnehtgs92sA_qj_tPnH0Bo9F1VQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541654150</pqid></control><display><type>article</type><title>Sustainable bio-succinic acid production: superstructure optimization, techno-economic, and lifecycle assessment</title><source>Royal Society Of Chemistry Journals</source><creator>Dickson, Rofice ; Mancini, Enrico ; Garg, Nipun ; Woodley, John M ; Gernaey, Krist V ; Pinelo, Manuel ; Liu, Jay ; Mansouri, Seyed Soheil</creator><creatorcontrib>Dickson, Rofice ; Mancini, Enrico ; Garg, Nipun ; Woodley, John M ; Gernaey, Krist V ; Pinelo, Manuel ; Liu, Jay ; Mansouri, Seyed Soheil</creatorcontrib><description>The production of bio-succinic acid (bio-SA) from biomass has the potential to partially replace some petrochemicals, reduce climate change by capturing carbon dioxide, and provide a cleaner environment by managing waste streams. This study evaluates the economics, environmental impact, risk assessment, and optimal processing route of bio-SA production from multiple feedstocks (first, second, and third-generation), including (1) glucose, (2) corn stover, (3) glycerol, and (4) seaweed. A superstructure-based optimization model consisting of 39 processing alternatives with a technology readiness level of 7-9 is developed, and the optimal topology for bio-SA production by maximization of the net present value under deterministic and stochastic conditions is identified. Once optimization is completed, the framework provides clear guidance for multi-criteria analysis, including the technical, economical, and environmental aspects of the biorefinery. The results indicate that glycerol is the best feedstock and corn stover is the second to best, producing bio-SA at selling prices of 1.6-1.9 USD per kg and 1.7-2.0 USD per kg, respectively, through their optimal processing pathways.
Saccharina japonica
(seaweed) is less suitable for large-scale bio-SA production due to the high cost of seaweed and the inability of enzymes to hydrolyze alginate, which is one of the major carbohydrate fractions (25-30 wt%) of this feedstock. The environmental results indicate that the optimal pathway from glycerol is the most environmentally friendly process, followed by optimal processing pathways from substrates such as corn stover, glucose, and
S. japonica
.
A multi-criteria strategy to identify sustainable bio-succinic acid production processes on a commercial scale.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d0ee03545a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acid production ; Algae ; Alginates ; Alginic acid ; Biorefineries ; Carbohydrates ; Carbon dioxide ; Carbon sequestration ; Climate change ; Corn ; Economic analysis ; Economic impact ; Environmental aspects ; Environmental assessment ; Environmental impact ; Glucose ; Glycerol ; Impact analysis ; Life cycle analysis ; Life cycle assessment ; Multiple criterion ; Optimization ; Petrochemicals ; Raw materials ; Risk assessment ; Seaweeds ; Stochasticity ; Substrates ; Succinic acid ; Superstructures ; Technology assessment ; Topology ; Waste management ; Waste streams</subject><ispartof>Energy & environmental science, 2021-06, Vol.14 (6), p.3542-3558</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-5a6b55d25a13452b6f6a8725eebad1e513d3eae3dc6de00b0390b70e0e3c2d193</citedby><cites>FETCH-LOGICAL-c351t-5a6b55d25a13452b6f6a8725eebad1e513d3eae3dc6de00b0390b70e0e3c2d193</cites><orcidid>0000-0003-4274-2355 ; 0000-0002-7976-2483 ; 0000-0002-0924-4947 ; 0000-0002-0364-1773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Dickson, Rofice</creatorcontrib><creatorcontrib>Mancini, Enrico</creatorcontrib><creatorcontrib>Garg, Nipun</creatorcontrib><creatorcontrib>Woodley, John M</creatorcontrib><creatorcontrib>Gernaey, Krist V</creatorcontrib><creatorcontrib>Pinelo, Manuel</creatorcontrib><creatorcontrib>Liu, Jay</creatorcontrib><creatorcontrib>Mansouri, Seyed Soheil</creatorcontrib><title>Sustainable bio-succinic acid production: superstructure optimization, techno-economic, and lifecycle assessment</title><title>Energy & environmental science</title><description>The production of bio-succinic acid (bio-SA) from biomass has the potential to partially replace some petrochemicals, reduce climate change by capturing carbon dioxide, and provide a cleaner environment by managing waste streams. This study evaluates the economics, environmental impact, risk assessment, and optimal processing route of bio-SA production from multiple feedstocks (first, second, and third-generation), including (1) glucose, (2) corn stover, (3) glycerol, and (4) seaweed. A superstructure-based optimization model consisting of 39 processing alternatives with a technology readiness level of 7-9 is developed, and the optimal topology for bio-SA production by maximization of the net present value under deterministic and stochastic conditions is identified. Once optimization is completed, the framework provides clear guidance for multi-criteria analysis, including the technical, economical, and environmental aspects of the biorefinery. The results indicate that glycerol is the best feedstock and corn stover is the second to best, producing bio-SA at selling prices of 1.6-1.9 USD per kg and 1.7-2.0 USD per kg, respectively, through their optimal processing pathways.
Saccharina japonica
(seaweed) is less suitable for large-scale bio-SA production due to the high cost of seaweed and the inability of enzymes to hydrolyze alginate, which is one of the major carbohydrate fractions (25-30 wt%) of this feedstock. The environmental results indicate that the optimal pathway from glycerol is the most environmentally friendly process, followed by optimal processing pathways from substrates such as corn stover, glucose, and
S. japonica
.
A multi-criteria strategy to identify sustainable bio-succinic acid production processes on a commercial scale.</description><subject>Acid production</subject><subject>Algae</subject><subject>Alginates</subject><subject>Alginic acid</subject><subject>Biorefineries</subject><subject>Carbohydrates</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Climate change</subject><subject>Corn</subject><subject>Economic analysis</subject><subject>Economic impact</subject><subject>Environmental aspects</subject><subject>Environmental assessment</subject><subject>Environmental impact</subject><subject>Glucose</subject><subject>Glycerol</subject><subject>Impact analysis</subject><subject>Life cycle analysis</subject><subject>Life cycle assessment</subject><subject>Multiple criterion</subject><subject>Optimization</subject><subject>Petrochemicals</subject><subject>Raw materials</subject><subject>Risk assessment</subject><subject>Seaweeds</subject><subject>Stochasticity</subject><subject>Substrates</subject><subject>Succinic acid</subject><subject>Superstructures</subject><subject>Technology assessment</subject><subject>Topology</subject><subject>Waste management</subject><subject>Waste streams</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LxDAQxYsouK5evAsBb7LVSdOk1pus6wcseFDPJU2mmGWb1CQ9rH-9WdePwzAzzI83vJdlpxQuKbD6SgMiMF5yuZdNaMXLnFcg9n9nUReH2VEIKwBRQFVPsuFlDFEaK9s1kta4PIxKGWsUkcpoMninRxWNszckjAP6EH3aR4_EDdH05lNujzMSUb1bl6Ny1vVGzYi0mqxNh2qjkrIMAUPo0cbj7KCT64AnP32avd0vXueP-fL54Wl-u8wV4zTmXIqWc11wSVnJi1Z0Ql5XBUdspabIKdMMJTKthEaANpmHtgIEZKrQtGbT7Hynmyx8jBhis3Kjt-llU_CSilQcEnWxo5R3IXjsmsGbXvpNQ6HZJtrcwWLxnehtgs92sA_qj_tPnH0Bo9F1VQ</recordid><startdate>20210616</startdate><enddate>20210616</enddate><creator>Dickson, Rofice</creator><creator>Mancini, Enrico</creator><creator>Garg, Nipun</creator><creator>Woodley, John M</creator><creator>Gernaey, Krist V</creator><creator>Pinelo, Manuel</creator><creator>Liu, Jay</creator><creator>Mansouri, Seyed Soheil</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4274-2355</orcidid><orcidid>https://orcid.org/0000-0002-7976-2483</orcidid><orcidid>https://orcid.org/0000-0002-0924-4947</orcidid><orcidid>https://orcid.org/0000-0002-0364-1773</orcidid></search><sort><creationdate>20210616</creationdate><title>Sustainable bio-succinic acid production: superstructure optimization, techno-economic, and lifecycle assessment</title><author>Dickson, Rofice ; Mancini, Enrico ; Garg, Nipun ; Woodley, John M ; Gernaey, Krist V ; Pinelo, Manuel ; Liu, Jay ; Mansouri, Seyed Soheil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-5a6b55d25a13452b6f6a8725eebad1e513d3eae3dc6de00b0390b70e0e3c2d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acid production</topic><topic>Algae</topic><topic>Alginates</topic><topic>Alginic acid</topic><topic>Biorefineries</topic><topic>Carbohydrates</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Climate change</topic><topic>Corn</topic><topic>Economic analysis</topic><topic>Economic impact</topic><topic>Environmental aspects</topic><topic>Environmental assessment</topic><topic>Environmental impact</topic><topic>Glucose</topic><topic>Glycerol</topic><topic>Impact analysis</topic><topic>Life cycle analysis</topic><topic>Life cycle assessment</topic><topic>Multiple criterion</topic><topic>Optimization</topic><topic>Petrochemicals</topic><topic>Raw materials</topic><topic>Risk assessment</topic><topic>Seaweeds</topic><topic>Stochasticity</topic><topic>Substrates</topic><topic>Succinic acid</topic><topic>Superstructures</topic><topic>Technology assessment</topic><topic>Topology</topic><topic>Waste management</topic><topic>Waste streams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dickson, Rofice</creatorcontrib><creatorcontrib>Mancini, Enrico</creatorcontrib><creatorcontrib>Garg, Nipun</creatorcontrib><creatorcontrib>Woodley, John M</creatorcontrib><creatorcontrib>Gernaey, Krist V</creatorcontrib><creatorcontrib>Pinelo, Manuel</creatorcontrib><creatorcontrib>Liu, Jay</creatorcontrib><creatorcontrib>Mansouri, Seyed Soheil</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dickson, Rofice</au><au>Mancini, Enrico</au><au>Garg, Nipun</au><au>Woodley, John M</au><au>Gernaey, Krist V</au><au>Pinelo, Manuel</au><au>Liu, Jay</au><au>Mansouri, Seyed Soheil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sustainable bio-succinic acid production: superstructure optimization, techno-economic, and lifecycle assessment</atitle><jtitle>Energy & environmental science</jtitle><date>2021-06-16</date><risdate>2021</risdate><volume>14</volume><issue>6</issue><spage>3542</spage><epage>3558</epage><pages>3542-3558</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>The production of bio-succinic acid (bio-SA) from biomass has the potential to partially replace some petrochemicals, reduce climate change by capturing carbon dioxide, and provide a cleaner environment by managing waste streams. This study evaluates the economics, environmental impact, risk assessment, and optimal processing route of bio-SA production from multiple feedstocks (first, second, and third-generation), including (1) glucose, (2) corn stover, (3) glycerol, and (4) seaweed. A superstructure-based optimization model consisting of 39 processing alternatives with a technology readiness level of 7-9 is developed, and the optimal topology for bio-SA production by maximization of the net present value under deterministic and stochastic conditions is identified. Once optimization is completed, the framework provides clear guidance for multi-criteria analysis, including the technical, economical, and environmental aspects of the biorefinery. The results indicate that glycerol is the best feedstock and corn stover is the second to best, producing bio-SA at selling prices of 1.6-1.9 USD per kg and 1.7-2.0 USD per kg, respectively, through their optimal processing pathways.
Saccharina japonica
(seaweed) is less suitable for large-scale bio-SA production due to the high cost of seaweed and the inability of enzymes to hydrolyze alginate, which is one of the major carbohydrate fractions (25-30 wt%) of this feedstock. The environmental results indicate that the optimal pathway from glycerol is the most environmentally friendly process, followed by optimal processing pathways from substrates such as corn stover, glucose, and
S. japonica
.
A multi-criteria strategy to identify sustainable bio-succinic acid production processes on a commercial scale.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ee03545a</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4274-2355</orcidid><orcidid>https://orcid.org/0000-0002-7976-2483</orcidid><orcidid>https://orcid.org/0000-0002-0924-4947</orcidid><orcidid>https://orcid.org/0000-0002-0364-1773</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2021-06, Vol.14 (6), p.3542-3558 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_rsc_primary_d0ee03545a |
source | Royal Society Of Chemistry Journals |
subjects | Acid production Algae Alginates Alginic acid Biorefineries Carbohydrates Carbon dioxide Carbon sequestration Climate change Corn Economic analysis Economic impact Environmental aspects Environmental assessment Environmental impact Glucose Glycerol Impact analysis Life cycle analysis Life cycle assessment Multiple criterion Optimization Petrochemicals Raw materials Risk assessment Seaweeds Stochasticity Substrates Succinic acid Superstructures Technology assessment Topology Waste management Waste streams |
title | Sustainable bio-succinic acid production: superstructure optimization, techno-economic, and lifecycle assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T23%3A04%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sustainable%20bio-succinic%20acid%20production:%20superstructure%20optimization,%20techno-economic,%20and%20lifecycle%20assessment&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Dickson,%20Rofice&rft.date=2021-06-16&rft.volume=14&rft.issue=6&rft.spage=3542&rft.epage=3558&rft.pages=3542-3558&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d0ee03545a&rft_dat=%3Cproquest_rsc_p%3E2541654150%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541654150&rft_id=info:pmid/&rfr_iscdi=true |