Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques
Due to their high specific capacities beyond 250 mA h g −1 , lithium-rich oxides have been considered as promising cathodes for the next generation power batteries, bridging the capacity gap between traditional layered-oxide based lithium-ion batteries and future lithium metal batteries such as lith...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2020-12, Vol.13 (12), p.445-4497 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4497 |
---|---|
container_issue | 12 |
container_start_page | 445 |
container_title | Energy & environmental science |
container_volume | 13 |
creator | Zuo, Wenhua Luo, Mingzeng Liu, Xiangsi Wu, Jue Liu, Haodong Li, Jie Winter, Martin Fu, Riqiang Yang, Wanli Yang, Yong |
description | Due to their high specific capacities beyond 250 mA h g
−1
, lithium-rich oxides have been considered as promising cathodes for the next generation power batteries, bridging the capacity gap between traditional layered-oxide based lithium-ion batteries and future lithium metal batteries such as lithium sulfur and lithium air batteries. However, the practical application of Li-rich oxides has been hindered by formidable challenges. To address these challenges, the understanding of their electrochemical behaviors becomes critical and is expected to offer effective guidance for both materials and cell development. This review aims to provide fundamental insights into the reaction mechanisms, electrochemical challenges and modification strategies of lithium-rich oxides. We first summarize the research history, the pristine structures, and the classification of lithium-rich oxides. Then we review the critical reaction mechanisms that are closely related to their electrochemical features and performances, such as lattice oxygen oxidation, oxygen vacancy formation, transition-metal migration, layered to spinel transitions, 'two-phase mechanism', and lattice evolution. These discussions are coupled with state-of-the-art characterization techniques. As a comparison, the anionic redox reactions of layered sodium transition metal oxides are also discussed. Finally, after a brief overview of the correlation among the aforementioned mechanisms, we provide perspectives on the rational design of lithium-rich oxides with high energy densities and long-term cycling stability.
This review summarizes the history and critical working mechanisms of Li-rich oxides with a special focus on anionic redox reactions. |
doi_str_mv | 10.1039/d0ee01694b |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0ee01694b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470415210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-efa1e56208910c1d3dfb80dc3ce5e14fc391cb2299e2927d9ed00196d8ea92ad3</originalsourceid><addsrcrecordid>eNpF0ctLAzEQBvAgCtbqxbsQ9CasTrKvxpvW-oCCFz0v2WTWprSJJqmgf73Zro_T5PCb8PENIccMLhjk4lIDIrBKFO0OGbG6LLKyhmr3910Jvk8OQlgCVBxqMSJ-bjJv1IIqGRdOY6Cd89SjWkj_irJdIU2ilQE1bWWM6A2GqwSkisZZuu6lNWEdqLSaSv0hrUq2308k8S-5hTFBa943GA7JXidXAY9-5pi83M2epw_Z_On-cXo9z1RR1DHDTjIsU8yJYKCYznXXTkCrXGGJrOhULphqORcCueC1FqgBmKj0BKXgUudjcjr860I0TVCmj6Cctahiw-oKgIuEzgb05l0fLjZLt_E25Wp4UUPBSp6KHZPzQSnvQvDYNW_erKX_bBg0ffHNLcxm2-JvEj4ZsA_qz_0fJv8GqgaA_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470415210</pqid></control><display><type>article</type><title>Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zuo, Wenhua ; Luo, Mingzeng ; Liu, Xiangsi ; Wu, Jue ; Liu, Haodong ; Li, Jie ; Winter, Martin ; Fu, Riqiang ; Yang, Wanli ; Yang, Yong</creator><creatorcontrib>Zuo, Wenhua ; Luo, Mingzeng ; Liu, Xiangsi ; Wu, Jue ; Liu, Haodong ; Li, Jie ; Winter, Martin ; Fu, Riqiang ; Yang, Wanli ; Yang, Yong</creatorcontrib><description>Due to their high specific capacities beyond 250 mA h g
−1
, lithium-rich oxides have been considered as promising cathodes for the next generation power batteries, bridging the capacity gap between traditional layered-oxide based lithium-ion batteries and future lithium metal batteries such as lithium sulfur and lithium air batteries. However, the practical application of Li-rich oxides has been hindered by formidable challenges. To address these challenges, the understanding of their electrochemical behaviors becomes critical and is expected to offer effective guidance for both materials and cell development. This review aims to provide fundamental insights into the reaction mechanisms, electrochemical challenges and modification strategies of lithium-rich oxides. We first summarize the research history, the pristine structures, and the classification of lithium-rich oxides. Then we review the critical reaction mechanisms that are closely related to their electrochemical features and performances, such as lattice oxygen oxidation, oxygen vacancy formation, transition-metal migration, layered to spinel transitions, 'two-phase mechanism', and lattice evolution. These discussions are coupled with state-of-the-art characterization techniques. As a comparison, the anionic redox reactions of layered sodium transition metal oxides are also discussed. Finally, after a brief overview of the correlation among the aforementioned mechanisms, we provide perspectives on the rational design of lithium-rich oxides with high energy densities and long-term cycling stability.
This review summarizes the history and critical working mechanisms of Li-rich oxides with a special focus on anionic redox reactions.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d0ee01694b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Cathodes ; Electrochemistry ; Lattice vacancies ; Lithium ; Lithium-ion batteries ; Metal air batteries ; Oxidation ; Oxides ; Oxygen ; Phase transitions ; Reaction mechanisms ; Rechargeable batteries ; Redox reactions ; Sulfur ; Transition metal oxides</subject><ispartof>Energy & environmental science, 2020-12, Vol.13 (12), p.445-4497</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-efa1e56208910c1d3dfb80dc3ce5e14fc391cb2299e2927d9ed00196d8ea92ad3</citedby><cites>FETCH-LOGICAL-c447t-efa1e56208910c1d3dfb80dc3ce5e14fc391cb2299e2927d9ed00196d8ea92ad3</cites><orcidid>0000-0002-1992-8656 ; 0000-0003-0666-8063 ; 0000-0003-1977-2775 ; 0000-0002-9928-7165 ; 0000-0001-9278-791X ; 0000-0002-5131-4769 ; 0000-0003-0075-0410 ; 0000000319772775 ; 0000000251314769 ; 0000000306668063 ; 0000000219928656 ; 0000000300750410 ; 000000019278791X ; 0000000299287165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1760029$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zuo, Wenhua</creatorcontrib><creatorcontrib>Luo, Mingzeng</creatorcontrib><creatorcontrib>Liu, Xiangsi</creatorcontrib><creatorcontrib>Wu, Jue</creatorcontrib><creatorcontrib>Liu, Haodong</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Fu, Riqiang</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><title>Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques</title><title>Energy & environmental science</title><description>Due to their high specific capacities beyond 250 mA h g
−1
, lithium-rich oxides have been considered as promising cathodes for the next generation power batteries, bridging the capacity gap between traditional layered-oxide based lithium-ion batteries and future lithium metal batteries such as lithium sulfur and lithium air batteries. However, the practical application of Li-rich oxides has been hindered by formidable challenges. To address these challenges, the understanding of their electrochemical behaviors becomes critical and is expected to offer effective guidance for both materials and cell development. This review aims to provide fundamental insights into the reaction mechanisms, electrochemical challenges and modification strategies of lithium-rich oxides. We first summarize the research history, the pristine structures, and the classification of lithium-rich oxides. Then we review the critical reaction mechanisms that are closely related to their electrochemical features and performances, such as lattice oxygen oxidation, oxygen vacancy formation, transition-metal migration, layered to spinel transitions, 'two-phase mechanism', and lattice evolution. These discussions are coupled with state-of-the-art characterization techniques. As a comparison, the anionic redox reactions of layered sodium transition metal oxides are also discussed. Finally, after a brief overview of the correlation among the aforementioned mechanisms, we provide perspectives on the rational design of lithium-rich oxides with high energy densities and long-term cycling stability.
This review summarizes the history and critical working mechanisms of Li-rich oxides with a special focus on anionic redox reactions.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Electrochemistry</subject><subject>Lattice vacancies</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Metal air batteries</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>Phase transitions</subject><subject>Reaction mechanisms</subject><subject>Rechargeable batteries</subject><subject>Redox reactions</subject><subject>Sulfur</subject><subject>Transition metal oxides</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpF0ctLAzEQBvAgCtbqxbsQ9CasTrKvxpvW-oCCFz0v2WTWprSJJqmgf73Zro_T5PCb8PENIccMLhjk4lIDIrBKFO0OGbG6LLKyhmr3910Jvk8OQlgCVBxqMSJ-bjJv1IIqGRdOY6Cd89SjWkj_irJdIU2ilQE1bWWM6A2GqwSkisZZuu6lNWEdqLSaSv0hrUq2308k8S-5hTFBa943GA7JXidXAY9-5pi83M2epw_Z_On-cXo9z1RR1DHDTjIsU8yJYKCYznXXTkCrXGGJrOhULphqORcCueC1FqgBmKj0BKXgUudjcjr860I0TVCmj6Cctahiw-oKgIuEzgb05l0fLjZLt_E25Wp4UUPBSp6KHZPzQSnvQvDYNW_erKX_bBg0ffHNLcxm2-JvEj4ZsA_qz_0fJv8GqgaA_g</recordid><startdate>20201216</startdate><enddate>20201216</enddate><creator>Zuo, Wenhua</creator><creator>Luo, Mingzeng</creator><creator>Liu, Xiangsi</creator><creator>Wu, Jue</creator><creator>Liu, Haodong</creator><creator>Li, Jie</creator><creator>Winter, Martin</creator><creator>Fu, Riqiang</creator><creator>Yang, Wanli</creator><creator>Yang, Yong</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1992-8656</orcidid><orcidid>https://orcid.org/0000-0003-0666-8063</orcidid><orcidid>https://orcid.org/0000-0003-1977-2775</orcidid><orcidid>https://orcid.org/0000-0002-9928-7165</orcidid><orcidid>https://orcid.org/0000-0001-9278-791X</orcidid><orcidid>https://orcid.org/0000-0002-5131-4769</orcidid><orcidid>https://orcid.org/0000-0003-0075-0410</orcidid><orcidid>https://orcid.org/0000000319772775</orcidid><orcidid>https://orcid.org/0000000251314769</orcidid><orcidid>https://orcid.org/0000000306668063</orcidid><orcidid>https://orcid.org/0000000219928656</orcidid><orcidid>https://orcid.org/0000000300750410</orcidid><orcidid>https://orcid.org/000000019278791X</orcidid><orcidid>https://orcid.org/0000000299287165</orcidid></search><sort><creationdate>20201216</creationdate><title>Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques</title><author>Zuo, Wenhua ; Luo, Mingzeng ; Liu, Xiangsi ; Wu, Jue ; Liu, Haodong ; Li, Jie ; Winter, Martin ; Fu, Riqiang ; Yang, Wanli ; Yang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-efa1e56208910c1d3dfb80dc3ce5e14fc391cb2299e2927d9ed00196d8ea92ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Electrochemistry</topic><topic>Lattice vacancies</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Metal air batteries</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>Phase transitions</topic><topic>Reaction mechanisms</topic><topic>Rechargeable batteries</topic><topic>Redox reactions</topic><topic>Sulfur</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Wenhua</creatorcontrib><creatorcontrib>Luo, Mingzeng</creatorcontrib><creatorcontrib>Liu, Xiangsi</creatorcontrib><creatorcontrib>Wu, Jue</creatorcontrib><creatorcontrib>Liu, Haodong</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Fu, Riqiang</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Wenhua</au><au>Luo, Mingzeng</au><au>Liu, Xiangsi</au><au>Wu, Jue</au><au>Liu, Haodong</au><au>Li, Jie</au><au>Winter, Martin</au><au>Fu, Riqiang</au><au>Yang, Wanli</au><au>Yang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques</atitle><jtitle>Energy & environmental science</jtitle><date>2020-12-16</date><risdate>2020</risdate><volume>13</volume><issue>12</issue><spage>445</spage><epage>4497</epage><pages>445-4497</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Due to their high specific capacities beyond 250 mA h g
−1
, lithium-rich oxides have been considered as promising cathodes for the next generation power batteries, bridging the capacity gap between traditional layered-oxide based lithium-ion batteries and future lithium metal batteries such as lithium sulfur and lithium air batteries. However, the practical application of Li-rich oxides has been hindered by formidable challenges. To address these challenges, the understanding of their electrochemical behaviors becomes critical and is expected to offer effective guidance for both materials and cell development. This review aims to provide fundamental insights into the reaction mechanisms, electrochemical challenges and modification strategies of lithium-rich oxides. We first summarize the research history, the pristine structures, and the classification of lithium-rich oxides. Then we review the critical reaction mechanisms that are closely related to their electrochemical features and performances, such as lattice oxygen oxidation, oxygen vacancy formation, transition-metal migration, layered to spinel transitions, 'two-phase mechanism', and lattice evolution. These discussions are coupled with state-of-the-art characterization techniques. As a comparison, the anionic redox reactions of layered sodium transition metal oxides are also discussed. Finally, after a brief overview of the correlation among the aforementioned mechanisms, we provide perspectives on the rational design of lithium-rich oxides with high energy densities and long-term cycling stability.
This review summarizes the history and critical working mechanisms of Li-rich oxides with a special focus on anionic redox reactions.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ee01694b</doi><tpages>48</tpages><orcidid>https://orcid.org/0000-0002-1992-8656</orcidid><orcidid>https://orcid.org/0000-0003-0666-8063</orcidid><orcidid>https://orcid.org/0000-0003-1977-2775</orcidid><orcidid>https://orcid.org/0000-0002-9928-7165</orcidid><orcidid>https://orcid.org/0000-0001-9278-791X</orcidid><orcidid>https://orcid.org/0000-0002-5131-4769</orcidid><orcidid>https://orcid.org/0000-0003-0075-0410</orcidid><orcidid>https://orcid.org/0000000319772775</orcidid><orcidid>https://orcid.org/0000000251314769</orcidid><orcidid>https://orcid.org/0000000306668063</orcidid><orcidid>https://orcid.org/0000000219928656</orcidid><orcidid>https://orcid.org/0000000300750410</orcidid><orcidid>https://orcid.org/000000019278791X</orcidid><orcidid>https://orcid.org/0000000299287165</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2020-12, Vol.13 (12), p.445-4497 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_rsc_primary_d0ee01694b |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Batteries Cathodes Electrochemistry Lattice vacancies Lithium Lithium-ion batteries Metal air batteries Oxidation Oxides Oxygen Phase transitions Reaction mechanisms Rechargeable batteries Redox reactions Sulfur Transition metal oxides |
title | Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li-rich%20cathodes%20for%20rechargeable%20Li-based%20batteries:%20reaction%20mechanisms%20and%20advanced%20characterization%20techniques&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Zuo,%20Wenhua&rft.date=2020-12-16&rft.volume=13&rft.issue=12&rft.spage=445&rft.epage=4497&rft.pages=445-4497&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d0ee01694b&rft_dat=%3Cproquest_rsc_p%3E2470415210%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470415210&rft_id=info:pmid/&rfr_iscdi=true |