Term magnetic circular dichroism (MCD) spectroscopy in paramagnetic transition metal and f-element organometallic chemistry

Magnetic circular dichroism (MCD) spectroscopy is a powerful experiment used to probe the electronic structure and bonding in paramagnetic metal-based complexes. While C -term MCD spectroscopy has been utilized in many areas of chemistry, it has been underutilized in studying paramagnetic organometa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2021-01, Vol.5 (2), p.416-428
Hauptverfasser: Wolford, Nikki J, Radovic, Aleksa, Neidig, Michael L
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 428
container_issue 2
container_start_page 416
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 5
creator Wolford, Nikki J
Radovic, Aleksa
Neidig, Michael L
description Magnetic circular dichroism (MCD) spectroscopy is a powerful experiment used to probe the electronic structure and bonding in paramagnetic metal-based complexes. While C -term MCD spectroscopy has been utilized in many areas of chemistry, it has been underutilized in studying paramagnetic organometallic transition metal and f-element complexes. From the analysis of isolated organometallic complexes to the study of in situ generated species, MCD can provide information regarding ligand interactions, oxidation and spin state, and geometry and coordination environment of paramagnetic species. The pratical aspects of this technique, such as air-free sample preparation and cryogenic experimental temperatures, allow for the study of highly unstable species, something that is often difficult with other spectroscopic techniques. This perspective highlights MCD studies of both transition metal and f-element organometallic complexes, including in situ generated reactive intermediates, to demonstrate the utility of this technique in probing electronic structure, bonding and mechanism in paramagnetic organometallic chemistry. This perspective provides an introduction to magnetic circular dichroism (MCD) spectroscopy and its efficacy in elucidating both fundamental electronic structure and in situ reaction speciation in d- and f-block organometallics.
doi_str_mv 10.1039/d0dt03730c
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d0dt03730c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d0dt03730c</sourcerecordid><originalsourceid>FETCH-rsc_primary_d0dt03730c3</originalsourceid><addsrcrecordid>eNqFj79LA0EQhZegkGhs0gtTanFmbzd6pI6KjV36MOxNkgn745hZi8N_XhSJpdV78PHxeMYsWvvQWr9e9rav1nfehomZtauua9bOry7O3T1NzZXqyVrn7KObmc8tSYKEh0yVAwSW8BFRoOdwlMKa4O5983wPOlCoUjSUYQTOMKDg2aqCWblyyZCoYgTMPewbipQoVyhywFx-SPzeOFJirTLOzeUeo9LNb16b29eX7eatEQ27QTihjLu_R_4__gWTOlGV</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Term magnetic circular dichroism (MCD) spectroscopy in paramagnetic transition metal and f-element organometallic chemistry</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wolford, Nikki J ; Radovic, Aleksa ; Neidig, Michael L</creator><creatorcontrib>Wolford, Nikki J ; Radovic, Aleksa ; Neidig, Michael L</creatorcontrib><description>Magnetic circular dichroism (MCD) spectroscopy is a powerful experiment used to probe the electronic structure and bonding in paramagnetic metal-based complexes. While C -term MCD spectroscopy has been utilized in many areas of chemistry, it has been underutilized in studying paramagnetic organometallic transition metal and f-element complexes. From the analysis of isolated organometallic complexes to the study of in situ generated species, MCD can provide information regarding ligand interactions, oxidation and spin state, and geometry and coordination environment of paramagnetic species. The pratical aspects of this technique, such as air-free sample preparation and cryogenic experimental temperatures, allow for the study of highly unstable species, something that is often difficult with other spectroscopic techniques. This perspective highlights MCD studies of both transition metal and f-element organometallic complexes, including in situ generated reactive intermediates, to demonstrate the utility of this technique in probing electronic structure, bonding and mechanism in paramagnetic organometallic chemistry. This perspective provides an introduction to magnetic circular dichroism (MCD) spectroscopy and its efficacy in elucidating both fundamental electronic structure and in situ reaction speciation in d- and f-block organometallics.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d0dt03730c</identifier><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2021-01, Vol.5 (2), p.416-428</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wolford, Nikki J</creatorcontrib><creatorcontrib>Radovic, Aleksa</creatorcontrib><creatorcontrib>Neidig, Michael L</creatorcontrib><title>Term magnetic circular dichroism (MCD) spectroscopy in paramagnetic transition metal and f-element organometallic chemistry</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>Magnetic circular dichroism (MCD) spectroscopy is a powerful experiment used to probe the electronic structure and bonding in paramagnetic metal-based complexes. While C -term MCD spectroscopy has been utilized in many areas of chemistry, it has been underutilized in studying paramagnetic organometallic transition metal and f-element complexes. From the analysis of isolated organometallic complexes to the study of in situ generated species, MCD can provide information regarding ligand interactions, oxidation and spin state, and geometry and coordination environment of paramagnetic species. The pratical aspects of this technique, such as air-free sample preparation and cryogenic experimental temperatures, allow for the study of highly unstable species, something that is often difficult with other spectroscopic techniques. This perspective highlights MCD studies of both transition metal and f-element organometallic complexes, including in situ generated reactive intermediates, to demonstrate the utility of this technique in probing electronic structure, bonding and mechanism in paramagnetic organometallic chemistry. This perspective provides an introduction to magnetic circular dichroism (MCD) spectroscopy and its efficacy in elucidating both fundamental electronic structure and in situ reaction speciation in d- and f-block organometallics.</description><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj79LA0EQhZegkGhs0gtTanFmbzd6pI6KjV36MOxNkgn745hZi8N_XhSJpdV78PHxeMYsWvvQWr9e9rav1nfehomZtauua9bOry7O3T1NzZXqyVrn7KObmc8tSYKEh0yVAwSW8BFRoOdwlMKa4O5983wPOlCoUjSUYQTOMKDg2aqCWblyyZCoYgTMPewbipQoVyhywFx-SPzeOFJirTLOzeUeo9LNb16b29eX7eatEQ27QTihjLu_R_4__gWTOlGV</recordid><startdate>20210119</startdate><enddate>20210119</enddate><creator>Wolford, Nikki J</creator><creator>Radovic, Aleksa</creator><creator>Neidig, Michael L</creator><scope/></search><sort><creationdate>20210119</creationdate><title>Term magnetic circular dichroism (MCD) spectroscopy in paramagnetic transition metal and f-element organometallic chemistry</title><author>Wolford, Nikki J ; Radovic, Aleksa ; Neidig, Michael L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d0dt03730c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Wolford, Nikki J</creatorcontrib><creatorcontrib>Radovic, Aleksa</creatorcontrib><creatorcontrib>Neidig, Michael L</creatorcontrib><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolford, Nikki J</au><au>Radovic, Aleksa</au><au>Neidig, Michael L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Term magnetic circular dichroism (MCD) spectroscopy in paramagnetic transition metal and f-element organometallic chemistry</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2021-01-19</date><risdate>2021</risdate><volume>5</volume><issue>2</issue><spage>416</spage><epage>428</epage><pages>416-428</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Magnetic circular dichroism (MCD) spectroscopy is a powerful experiment used to probe the electronic structure and bonding in paramagnetic metal-based complexes. While C -term MCD spectroscopy has been utilized in many areas of chemistry, it has been underutilized in studying paramagnetic organometallic transition metal and f-element complexes. From the analysis of isolated organometallic complexes to the study of in situ generated species, MCD can provide information regarding ligand interactions, oxidation and spin state, and geometry and coordination environment of paramagnetic species. The pratical aspects of this technique, such as air-free sample preparation and cryogenic experimental temperatures, allow for the study of highly unstable species, something that is often difficult with other spectroscopic techniques. This perspective highlights MCD studies of both transition metal and f-element organometallic complexes, including in situ generated reactive intermediates, to demonstrate the utility of this technique in probing electronic structure, bonding and mechanism in paramagnetic organometallic chemistry. This perspective provides an introduction to magnetic circular dichroism (MCD) spectroscopy and its efficacy in elucidating both fundamental electronic structure and in situ reaction speciation in d- and f-block organometallics.</abstract><doi>10.1039/d0dt03730c</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2021-01, Vol.5 (2), p.416-428
issn 1477-9226
1477-9234
language
recordid cdi_rsc_primary_d0dt03730c
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Term magnetic circular dichroism (MCD) spectroscopy in paramagnetic transition metal and f-element organometallic chemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Term%20magnetic%20circular%20dichroism%20(MCD)%20spectroscopy%20in%20paramagnetic%20transition%20metal%20and%20f-element%20organometallic%20chemistry&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Wolford,%20Nikki%20J&rft.date=2021-01-19&rft.volume=5&rft.issue=2&rft.spage=416&rft.epage=428&rft.pages=416-428&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d0dt03730c&rft_dat=%3Crsc%3Ed0dt03730c%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true