Accurate computed spin-state energetics for Co() complexes: implications for modelling homogeneous catalysis
Co( iii ) complexes are increasingly prevalent in homogeneous catalysis. Catalytic cycles involve multiple intermediates, many of which will feature unsaturated metal centres. This raises the possibility of multi-state character along reaction pathways and so requires an accurate approach to calcula...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2020-05, Vol.49 (19), p.6478-6487 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6487 |
---|---|
container_issue | 19 |
container_start_page | 6478 |
container_title | Dalton transactions : an international journal of inorganic chemistry |
container_volume | 49 |
creator | Neale, Samuel E Pantazis, Dimitrios A Macgregor, Stuart A |
description | Co(
iii
) complexes are increasingly prevalent in homogeneous catalysis. Catalytic cycles involve multiple intermediates, many of which will feature unsaturated metal centres. This raises the possibility of multi-state character along reaction pathways and so requires an accurate approach to calculating spin-state energetics. Here we report an assessment of the performance of DLPNO-CCSD(T) (domain-based local pair natural orbital approximation to coupled cluster theory) against experimental
1
Co to
3
Co spin splitting energies for a series of pseudo-octahedral Co(
iii
) complexes. The alternative NEVPT2 (strongly-contracted n-electron valence perturbation theory) and a range of density functionals are also assessed. DLPNO-CCSD(T) is identified as a highly promising method, with mean absolute deviations (MADs) as small as 1.3 kcal mol
−1
when Kohn-Sham reference orbitals are used. DLPNO-CCSD(T) out-performs NEVPT2 for which a MAD of 3.5 kcal mol
−1
can be achieved when a (10,12) active space is employed. Of the nine DFT methods investigated TPSS is the leading functional, with a MAD of 1.9 kcal mol
−1
. Our results show how DLPNO-CCSD(T) can provide accurate spin state energetics for Co(
iii
) species in particular and first row transition metal systems in general. DLPNO-CCSD(T) is therefore a promising method for applications in the burgeoning field of homogeneous catalysis based on Co(
iii
) species.
DLPNO-CCSD(T) calculations provide accurate spin state energetics for a range of Co(
iii
) complexes and so represent a promising approach to modelling homogeneous catalysis based on Co(
iii
) species. |
doi_str_mv | 10.1039/d0dt00993h |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0dt00993h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398163389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-e95a18667efba15902707a3e1bf180526f13108b6270c0798ca01f9f56718d103</originalsourceid><addsrcrecordid>eNp90c1LwzAUAPAgipvTi3el4mUK1Xz0I_E2NnXCwMs8lyxNtoy2qUkL7r83W-cED57yePnl8fIeAJcIPiBI2GMO8wZCxsjqCPRRlKYhwyQ6PsQ46YEz59YQYgxjfAp6BJOEkJj2QTESorW8kYEwZd02Mg9cravQNducrKRdykYLFyhjg7EZ3u1cIb-kewq0j7TgjTZVB0qTy6LQ1TJYmdIs_XPTusALXmycdufgRPHCyYv9OQAfL8_z8TScvb--jUezUBDGmlCymCOaJKlUC45iBnEKU04kWihE_QcShQiCdJH4vIApo4JDpJiKkxTR3I9kAIZd3dqaz1a6Jiu1E74zvmsow4RR5AdAmae3f-jatLby3WU4ghFmJEWRV_edEtY4Z6XKaqtLbjcZgtl2B9kETua7HUw9vt6XbBelzA_0Z-ge3HTAOnG4_V1iVufKm6v_DPkGLoiWkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404293714</pqid></control><display><type>article</type><title>Accurate computed spin-state energetics for Co() complexes: implications for modelling homogeneous catalysis</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Neale, Samuel E ; Pantazis, Dimitrios A ; Macgregor, Stuart A</creator><creatorcontrib>Neale, Samuel E ; Pantazis, Dimitrios A ; Macgregor, Stuart A</creatorcontrib><description>Co(
iii
) complexes are increasingly prevalent in homogeneous catalysis. Catalytic cycles involve multiple intermediates, many of which will feature unsaturated metal centres. This raises the possibility of multi-state character along reaction pathways and so requires an accurate approach to calculating spin-state energetics. Here we report an assessment of the performance of DLPNO-CCSD(T) (domain-based local pair natural orbital approximation to coupled cluster theory) against experimental
1
Co to
3
Co spin splitting energies for a series of pseudo-octahedral Co(
iii
) complexes. The alternative NEVPT2 (strongly-contracted n-electron valence perturbation theory) and a range of density functionals are also assessed. DLPNO-CCSD(T) is identified as a highly promising method, with mean absolute deviations (MADs) as small as 1.3 kcal mol
−1
when Kohn-Sham reference orbitals are used. DLPNO-CCSD(T) out-performs NEVPT2 for which a MAD of 3.5 kcal mol
−1
can be achieved when a (10,12) active space is employed. Of the nine DFT methods investigated TPSS is the leading functional, with a MAD of 1.9 kcal mol
−1
. Our results show how DLPNO-CCSD(T) can provide accurate spin state energetics for Co(
iii
) species in particular and first row transition metal systems in general. DLPNO-CCSD(T) is therefore a promising method for applications in the burgeoning field of homogeneous catalysis based on Co(
iii
) species.
DLPNO-CCSD(T) calculations provide accurate spin state energetics for a range of Co(
iii
) complexes and so represent a promising approach to modelling homogeneous catalysis based on Co(
iii
) species.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d0dt00993h</identifier><identifier>PMID: 32363358</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Catalysis ; Computation ; Perturbation theory ; Transition metals</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2020-05, Vol.49 (19), p.6478-6487</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-e95a18667efba15902707a3e1bf180526f13108b6270c0798ca01f9f56718d103</citedby><cites>FETCH-LOGICAL-c399t-e95a18667efba15902707a3e1bf180526f13108b6270c0798ca01f9f56718d103</cites><orcidid>0000-0003-3454-6776 ; 0000-0003-3027-9594 ; 0000-0002-2146-9065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32363358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Neale, Samuel E</creatorcontrib><creatorcontrib>Pantazis, Dimitrios A</creatorcontrib><creatorcontrib>Macgregor, Stuart A</creatorcontrib><title>Accurate computed spin-state energetics for Co() complexes: implications for modelling homogeneous catalysis</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>Co(
iii
) complexes are increasingly prevalent in homogeneous catalysis. Catalytic cycles involve multiple intermediates, many of which will feature unsaturated metal centres. This raises the possibility of multi-state character along reaction pathways and so requires an accurate approach to calculating spin-state energetics. Here we report an assessment of the performance of DLPNO-CCSD(T) (domain-based local pair natural orbital approximation to coupled cluster theory) against experimental
1
Co to
3
Co spin splitting energies for a series of pseudo-octahedral Co(
iii
) complexes. The alternative NEVPT2 (strongly-contracted n-electron valence perturbation theory) and a range of density functionals are also assessed. DLPNO-CCSD(T) is identified as a highly promising method, with mean absolute deviations (MADs) as small as 1.3 kcal mol
−1
when Kohn-Sham reference orbitals are used. DLPNO-CCSD(T) out-performs NEVPT2 for which a MAD of 3.5 kcal mol
−1
can be achieved when a (10,12) active space is employed. Of the nine DFT methods investigated TPSS is the leading functional, with a MAD of 1.9 kcal mol
−1
. Our results show how DLPNO-CCSD(T) can provide accurate spin state energetics for Co(
iii
) species in particular and first row transition metal systems in general. DLPNO-CCSD(T) is therefore a promising method for applications in the burgeoning field of homogeneous catalysis based on Co(
iii
) species.
DLPNO-CCSD(T) calculations provide accurate spin state energetics for a range of Co(
iii
) complexes and so represent a promising approach to modelling homogeneous catalysis based on Co(
iii
) species.</description><subject>Catalysis</subject><subject>Computation</subject><subject>Perturbation theory</subject><subject>Transition metals</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90c1LwzAUAPAgipvTi3el4mUK1Xz0I_E2NnXCwMs8lyxNtoy2qUkL7r83W-cED57yePnl8fIeAJcIPiBI2GMO8wZCxsjqCPRRlKYhwyQ6PsQ46YEz59YQYgxjfAp6BJOEkJj2QTESorW8kYEwZd02Mg9cravQNducrKRdykYLFyhjg7EZ3u1cIb-kewq0j7TgjTZVB0qTy6LQ1TJYmdIs_XPTusALXmycdufgRPHCyYv9OQAfL8_z8TScvb--jUezUBDGmlCymCOaJKlUC45iBnEKU04kWihE_QcShQiCdJH4vIApo4JDpJiKkxTR3I9kAIZd3dqaz1a6Jiu1E74zvmsow4RR5AdAmae3f-jatLby3WU4ghFmJEWRV_edEtY4Z6XKaqtLbjcZgtl2B9kETua7HUw9vt6XbBelzA_0Z-ge3HTAOnG4_V1iVufKm6v_DPkGLoiWkg</recordid><startdate>20200519</startdate><enddate>20200519</enddate><creator>Neale, Samuel E</creator><creator>Pantazis, Dimitrios A</creator><creator>Macgregor, Stuart A</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3454-6776</orcidid><orcidid>https://orcid.org/0000-0003-3027-9594</orcidid><orcidid>https://orcid.org/0000-0002-2146-9065</orcidid></search><sort><creationdate>20200519</creationdate><title>Accurate computed spin-state energetics for Co() complexes: implications for modelling homogeneous catalysis</title><author>Neale, Samuel E ; Pantazis, Dimitrios A ; Macgregor, Stuart A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-e95a18667efba15902707a3e1bf180526f13108b6270c0798ca01f9f56718d103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysis</topic><topic>Computation</topic><topic>Perturbation theory</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neale, Samuel E</creatorcontrib><creatorcontrib>Pantazis, Dimitrios A</creatorcontrib><creatorcontrib>Macgregor, Stuart A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neale, Samuel E</au><au>Pantazis, Dimitrios A</au><au>Macgregor, Stuart A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate computed spin-state energetics for Co() complexes: implications for modelling homogeneous catalysis</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2020-05-19</date><risdate>2020</risdate><volume>49</volume><issue>19</issue><spage>6478</spage><epage>6487</epage><pages>6478-6487</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Co(
iii
) complexes are increasingly prevalent in homogeneous catalysis. Catalytic cycles involve multiple intermediates, many of which will feature unsaturated metal centres. This raises the possibility of multi-state character along reaction pathways and so requires an accurate approach to calculating spin-state energetics. Here we report an assessment of the performance of DLPNO-CCSD(T) (domain-based local pair natural orbital approximation to coupled cluster theory) against experimental
1
Co to
3
Co spin splitting energies for a series of pseudo-octahedral Co(
iii
) complexes. The alternative NEVPT2 (strongly-contracted n-electron valence perturbation theory) and a range of density functionals are also assessed. DLPNO-CCSD(T) is identified as a highly promising method, with mean absolute deviations (MADs) as small as 1.3 kcal mol
−1
when Kohn-Sham reference orbitals are used. DLPNO-CCSD(T) out-performs NEVPT2 for which a MAD of 3.5 kcal mol
−1
can be achieved when a (10,12) active space is employed. Of the nine DFT methods investigated TPSS is the leading functional, with a MAD of 1.9 kcal mol
−1
. Our results show how DLPNO-CCSD(T) can provide accurate spin state energetics for Co(
iii
) species in particular and first row transition metal systems in general. DLPNO-CCSD(T) is therefore a promising method for applications in the burgeoning field of homogeneous catalysis based on Co(
iii
) species.
DLPNO-CCSD(T) calculations provide accurate spin state energetics for a range of Co(
iii
) complexes and so represent a promising approach to modelling homogeneous catalysis based on Co(
iii
) species.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32363358</pmid><doi>10.1039/d0dt00993h</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3454-6776</orcidid><orcidid>https://orcid.org/0000-0003-3027-9594</orcidid><orcidid>https://orcid.org/0000-0002-2146-9065</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-9226 |
ispartof | Dalton transactions : an international journal of inorganic chemistry, 2020-05, Vol.49 (19), p.6478-6487 |
issn | 1477-9226 1477-9234 |
language | eng |
recordid | cdi_rsc_primary_d0dt00993h |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Catalysis Computation Perturbation theory Transition metals |
title | Accurate computed spin-state energetics for Co() complexes: implications for modelling homogeneous catalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A09%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20computed%20spin-state%20energetics%20for%20Co()%20complexes:%20implications%20for%20modelling%20homogeneous%20catalysis&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Neale,%20Samuel%20E&rft.date=2020-05-19&rft.volume=49&rft.issue=19&rft.spage=6478&rft.epage=6487&rft.pages=6478-6487&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d0dt00993h&rft_dat=%3Cproquest_rsc_p%3E2398163389%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404293714&rft_id=info:pmid/32363358&rfr_iscdi=true |