Magnetic recyclable α-FeO-FeO/CoO-CoO nanocomposite with a dual Z-scheme charge transfer pathway for quick photo-Fenton degradation of organic pollutants

The integration of multiple degradation pathways in a single catalyst is a potential approach to advance the technologies of organic pollutant degradation. To integrate both the heterogeneous photo-Fenton reaction and Z-scheme configuration in a single catalyst, a novel magnetic separable α-Fe 2 O 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2021-05, Vol.11 (9), p.384-397
Hauptverfasser: Alkanad, Khaled, Hezam, Abdo, Sujay Shekar, G. C, Drmosh, Q. A, Amrutha Kala, A. L, AL-Gunaid, Murad. Q. A, Lokanath, N. K
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue 9
container_start_page 384
container_title Catalysis science & technology
container_volume 11
creator Alkanad, Khaled
Hezam, Abdo
Sujay Shekar, G. C
Drmosh, Q. A
Amrutha Kala, A. L
AL-Gunaid, Murad. Q. A
Lokanath, N. K
description The integration of multiple degradation pathways in a single catalyst is a potential approach to advance the technologies of organic pollutant degradation. To integrate both the heterogeneous photo-Fenton reaction and Z-scheme configuration in a single catalyst, a novel magnetic separable α-Fe 2 O 3 -Fe 3 O 4 /Co 3 O 4 -CoO nanocomposite enriched with oxygen vacancies is fabricated via the solution combustion method by optimizing the fuel and nitrate ion concentration. The Z-scheme configuration along with oxygen vacancies contributes to in situ H 2 O 2 generation and simultaneous reactivation with high H 2 O 2 performance, which is required for the photo-Fenton process. Oxygen vacancies facilitate the charge carrier transfer in the Z-scheme system and promote interfacial electronic transmission involved in the redox cycle from Co III /Fe III to Co II /Fe II , inducing the generation of &z.rad;O 2 − , 1 O 2 , &z.rad;SO 4 − and &z.rad;OH radicals. Consequently, the transcendental catalyst exhibits excellent photo-Fenton photocatalytic features facilitating highly improved pollutant degradation under sunlight irradiation and Fenton reaction promoting the degradation in the dark as well. The photodegradation rate is enhanced 5.33 times and 3.6 times in the presence of H 2 O 2 and persulfate, respectively. This study opens the possibility of designing a single catalyst with different degradation mechanisms. A novel α-Fe 2 O 3 -Fe 3 O 4 /Co 3 O 4 -CoO nanocomposite was developed, integrating multiple degradation pathways. The Z-scheme configuration and oxygen vacancies contributes to in situ H 2 O 2 formation and simultaneous reactivation showing excellent performance.
doi_str_mv 10.1039/d0cy02280b
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d0cy02280b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d0cy02280b</sourcerecordid><originalsourceid>FETCH-rsc_primary_d0cy02280b3</originalsourceid><addsrcrecordid>eNqFT81KAzEYDKJg0V68C98LxGZ_1PZcLF6kl568lK_ZbzfRbL6YZCn7Kr6FL-IzuYLo0YFhBgaGGSGuCnVTqGq1aJQeVVku1eFEzEpV17K-vytOf_1tdS7mKb2oCfWqUMtyJt6fsPOUrYZIetQOD47g80NuaPvNxZq3ciJ49Ky5D5xsJjjabAChGdDBs0zaUE-gDcaOIEf0qaUIAbM54ggtR3gbrH6FYDjzVOsze2ioi9hgtpPnFjh26KcZgZ0bMvqcLsVZiy7R_EcvxPXmYbd-lDHpfYi2xzju_z5X_-VfLDBdLQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetic recyclable α-FeO-FeO/CoO-CoO nanocomposite with a dual Z-scheme charge transfer pathway for quick photo-Fenton degradation of organic pollutants</title><source>Royal Society Of Chemistry Journals</source><creator>Alkanad, Khaled ; Hezam, Abdo ; Sujay Shekar, G. C ; Drmosh, Q. A ; Amrutha Kala, A. L ; AL-Gunaid, Murad. Q. A ; Lokanath, N. K</creator><creatorcontrib>Alkanad, Khaled ; Hezam, Abdo ; Sujay Shekar, G. C ; Drmosh, Q. A ; Amrutha Kala, A. L ; AL-Gunaid, Murad. Q. A ; Lokanath, N. K</creatorcontrib><description>The integration of multiple degradation pathways in a single catalyst is a potential approach to advance the technologies of organic pollutant degradation. To integrate both the heterogeneous photo-Fenton reaction and Z-scheme configuration in a single catalyst, a novel magnetic separable α-Fe 2 O 3 -Fe 3 O 4 /Co 3 O 4 -CoO nanocomposite enriched with oxygen vacancies is fabricated via the solution combustion method by optimizing the fuel and nitrate ion concentration. The Z-scheme configuration along with oxygen vacancies contributes to in situ H 2 O 2 generation and simultaneous reactivation with high H 2 O 2 performance, which is required for the photo-Fenton process. Oxygen vacancies facilitate the charge carrier transfer in the Z-scheme system and promote interfacial electronic transmission involved in the redox cycle from Co III /Fe III to Co II /Fe II , inducing the generation of &amp;z.rad;O 2 − , 1 O 2 , &amp;z.rad;SO 4 − and &amp;z.rad;OH radicals. Consequently, the transcendental catalyst exhibits excellent photo-Fenton photocatalytic features facilitating highly improved pollutant degradation under sunlight irradiation and Fenton reaction promoting the degradation in the dark as well. The photodegradation rate is enhanced 5.33 times and 3.6 times in the presence of H 2 O 2 and persulfate, respectively. This study opens the possibility of designing a single catalyst with different degradation mechanisms. A novel α-Fe 2 O 3 -Fe 3 O 4 /Co 3 O 4 -CoO nanocomposite was developed, integrating multiple degradation pathways. The Z-scheme configuration and oxygen vacancies contributes to in situ H 2 O 2 formation and simultaneous reactivation showing excellent performance.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/d0cy02280b</identifier><ispartof>Catalysis science &amp; technology, 2021-05, Vol.11 (9), p.384-397</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Alkanad, Khaled</creatorcontrib><creatorcontrib>Hezam, Abdo</creatorcontrib><creatorcontrib>Sujay Shekar, G. C</creatorcontrib><creatorcontrib>Drmosh, Q. A</creatorcontrib><creatorcontrib>Amrutha Kala, A. L</creatorcontrib><creatorcontrib>AL-Gunaid, Murad. Q. A</creatorcontrib><creatorcontrib>Lokanath, N. K</creatorcontrib><title>Magnetic recyclable α-FeO-FeO/CoO-CoO nanocomposite with a dual Z-scheme charge transfer pathway for quick photo-Fenton degradation of organic pollutants</title><title>Catalysis science &amp; technology</title><description>The integration of multiple degradation pathways in a single catalyst is a potential approach to advance the technologies of organic pollutant degradation. To integrate both the heterogeneous photo-Fenton reaction and Z-scheme configuration in a single catalyst, a novel magnetic separable α-Fe 2 O 3 -Fe 3 O 4 /Co 3 O 4 -CoO nanocomposite enriched with oxygen vacancies is fabricated via the solution combustion method by optimizing the fuel and nitrate ion concentration. The Z-scheme configuration along with oxygen vacancies contributes to in situ H 2 O 2 generation and simultaneous reactivation with high H 2 O 2 performance, which is required for the photo-Fenton process. Oxygen vacancies facilitate the charge carrier transfer in the Z-scheme system and promote interfacial electronic transmission involved in the redox cycle from Co III /Fe III to Co II /Fe II , inducing the generation of &amp;z.rad;O 2 − , 1 O 2 , &amp;z.rad;SO 4 − and &amp;z.rad;OH radicals. Consequently, the transcendental catalyst exhibits excellent photo-Fenton photocatalytic features facilitating highly improved pollutant degradation under sunlight irradiation and Fenton reaction promoting the degradation in the dark as well. The photodegradation rate is enhanced 5.33 times and 3.6 times in the presence of H 2 O 2 and persulfate, respectively. This study opens the possibility of designing a single catalyst with different degradation mechanisms. A novel α-Fe 2 O 3 -Fe 3 O 4 /Co 3 O 4 -CoO nanocomposite was developed, integrating multiple degradation pathways. The Z-scheme configuration and oxygen vacancies contributes to in situ H 2 O 2 formation and simultaneous reactivation showing excellent performance.</description><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFT81KAzEYDKJg0V68C98LxGZ_1PZcLF6kl568lK_ZbzfRbL6YZCn7Kr6FL-IzuYLo0YFhBgaGGSGuCnVTqGq1aJQeVVku1eFEzEpV17K-vytOf_1tdS7mKb2oCfWqUMtyJt6fsPOUrYZIetQOD47g80NuaPvNxZq3ciJ49Ky5D5xsJjjabAChGdDBs0zaUE-gDcaOIEf0qaUIAbM54ggtR3gbrH6FYDjzVOsze2ioi9hgtpPnFjh26KcZgZ0bMvqcLsVZiy7R_EcvxPXmYbd-lDHpfYi2xzju_z5X_-VfLDBdLQ</recordid><startdate>20210511</startdate><enddate>20210511</enddate><creator>Alkanad, Khaled</creator><creator>Hezam, Abdo</creator><creator>Sujay Shekar, G. C</creator><creator>Drmosh, Q. A</creator><creator>Amrutha Kala, A. L</creator><creator>AL-Gunaid, Murad. Q. A</creator><creator>Lokanath, N. K</creator><scope/></search><sort><creationdate>20210511</creationdate><title>Magnetic recyclable α-FeO-FeO/CoO-CoO nanocomposite with a dual Z-scheme charge transfer pathway for quick photo-Fenton degradation of organic pollutants</title><author>Alkanad, Khaled ; Hezam, Abdo ; Sujay Shekar, G. C ; Drmosh, Q. A ; Amrutha Kala, A. L ; AL-Gunaid, Murad. Q. A ; Lokanath, N. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d0cy02280b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alkanad, Khaled</creatorcontrib><creatorcontrib>Hezam, Abdo</creatorcontrib><creatorcontrib>Sujay Shekar, G. C</creatorcontrib><creatorcontrib>Drmosh, Q. A</creatorcontrib><creatorcontrib>Amrutha Kala, A. L</creatorcontrib><creatorcontrib>AL-Gunaid, Murad. Q. A</creatorcontrib><creatorcontrib>Lokanath, N. K</creatorcontrib><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alkanad, Khaled</au><au>Hezam, Abdo</au><au>Sujay Shekar, G. C</au><au>Drmosh, Q. A</au><au>Amrutha Kala, A. L</au><au>AL-Gunaid, Murad. Q. A</au><au>Lokanath, N. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic recyclable α-FeO-FeO/CoO-CoO nanocomposite with a dual Z-scheme charge transfer pathway for quick photo-Fenton degradation of organic pollutants</atitle><jtitle>Catalysis science &amp; technology</jtitle><date>2021-05-11</date><risdate>2021</risdate><volume>11</volume><issue>9</issue><spage>384</spage><epage>397</epage><pages>384-397</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>The integration of multiple degradation pathways in a single catalyst is a potential approach to advance the technologies of organic pollutant degradation. To integrate both the heterogeneous photo-Fenton reaction and Z-scheme configuration in a single catalyst, a novel magnetic separable α-Fe 2 O 3 -Fe 3 O 4 /Co 3 O 4 -CoO nanocomposite enriched with oxygen vacancies is fabricated via the solution combustion method by optimizing the fuel and nitrate ion concentration. The Z-scheme configuration along with oxygen vacancies contributes to in situ H 2 O 2 generation and simultaneous reactivation with high H 2 O 2 performance, which is required for the photo-Fenton process. Oxygen vacancies facilitate the charge carrier transfer in the Z-scheme system and promote interfacial electronic transmission involved in the redox cycle from Co III /Fe III to Co II /Fe II , inducing the generation of &amp;z.rad;O 2 − , 1 O 2 , &amp;z.rad;SO 4 − and &amp;z.rad;OH radicals. Consequently, the transcendental catalyst exhibits excellent photo-Fenton photocatalytic features facilitating highly improved pollutant degradation under sunlight irradiation and Fenton reaction promoting the degradation in the dark as well. The photodegradation rate is enhanced 5.33 times and 3.6 times in the presence of H 2 O 2 and persulfate, respectively. This study opens the possibility of designing a single catalyst with different degradation mechanisms. A novel α-Fe 2 O 3 -Fe 3 O 4 /Co 3 O 4 -CoO nanocomposite was developed, integrating multiple degradation pathways. The Z-scheme configuration and oxygen vacancies contributes to in situ H 2 O 2 formation and simultaneous reactivation showing excellent performance.</abstract><doi>10.1039/d0cy02280b</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2021-05, Vol.11 (9), p.384-397
issn 2044-4753
2044-4761
language
recordid cdi_rsc_primary_d0cy02280b
source Royal Society Of Chemistry Journals
title Magnetic recyclable α-FeO-FeO/CoO-CoO nanocomposite with a dual Z-scheme charge transfer pathway for quick photo-Fenton degradation of organic pollutants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20recyclable%20%CE%B1-FeO-FeO/CoO-CoO%20nanocomposite%20with%20a%20dual%20Z-scheme%20charge%20transfer%20pathway%20for%20quick%20photo-Fenton%20degradation%20of%20organic%20pollutants&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Alkanad,%20Khaled&rft.date=2021-05-11&rft.volume=11&rft.issue=9&rft.spage=384&rft.epage=397&rft.pages=384-397&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/d0cy02280b&rft_dat=%3Crsc%3Ed0cy02280b%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true