Thermoelectric power factor of doped BiOSe: a computational study
In this paper, we systematically studied the thermoelectric power factor of Bi 2 O 2 Se when doped with a total of 21 main group elements. This was achieved using first principles density functional theory combined with semi-classical Boltzmann transport theory. Starting from the integral factor in...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2020-12, Vol.22 (46), p.2796-2714 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2714 |
---|---|
container_issue | 46 |
container_start_page | 2796 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 22 |
creator | Hu, Kerong Han, Jian Xu, Ben Lin, Yuan-Hua |
description | In this paper, we systematically studied the thermoelectric power factor of Bi
2
O
2
Se when doped with a total of 21 main group elements. This was achieved using first principles density functional theory combined with semi-classical Boltzmann transport theory. Starting from the integral factor in Mott's formula, we thoroughly examined the thermoelectric power factor that was determined from the electronic structure. We also determined the mechanisms of action of temperature and carrier concentrations on these properties. The results show that there are different optimization strategies for the density of states (DOS) with different shapes around the Fermi level. The unconventional behaviours of the Sn, In and Tl doping cases are discussed. The present work uses a theoretical approach to study the effect of doping elements on the thermoelectric power factor of Bi
2
O
2
Se, which is valuable for optimizing its desired properties.
A theoretical study of how electronic structure affects the thermoelectric power factor of doped Bi
2
O
2
Se. |
doi_str_mv | 10.1039/d0cp01641a |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d0cp01641a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d0cp01641a</sourcerecordid><originalsourceid>FETCH-rsc_primary_d0cp01641a3</originalsourceid><addsrcrecordid>eNqFjj0LwjAUAIMoWD8Wd-H9AfWF1GrdVBQ3B7uXkLxipDUhSZH-exfR0ekObjnGZhyXHEW-0qgc8izlsscSnmZikeM27X99kw3ZKIQHIvI1FwnbF3fyjaWaVPRGgbMv8lBJFa0HW4G2jjQczPVGO5CgbOPaKKOxT1lDiK3uJmxQyTrQ9MMxm59PxfGy8EGVzptG-q78fYl__Q37Bzsn</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermoelectric power factor of doped BiOSe: a computational study</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Hu, Kerong ; Han, Jian ; Xu, Ben ; Lin, Yuan-Hua</creator><creatorcontrib>Hu, Kerong ; Han, Jian ; Xu, Ben ; Lin, Yuan-Hua</creatorcontrib><description>In this paper, we systematically studied the thermoelectric power factor of Bi
2
O
2
Se when doped with a total of 21 main group elements. This was achieved using first principles density functional theory combined with semi-classical Boltzmann transport theory. Starting from the integral factor in Mott's formula, we thoroughly examined the thermoelectric power factor that was determined from the electronic structure. We also determined the mechanisms of action of temperature and carrier concentrations on these properties. The results show that there are different optimization strategies for the density of states (DOS) with different shapes around the Fermi level. The unconventional behaviours of the Sn, In and Tl doping cases are discussed. The present work uses a theoretical approach to study the effect of doping elements on the thermoelectric power factor of Bi
2
O
2
Se, which is valuable for optimizing its desired properties.
A theoretical study of how electronic structure affects the thermoelectric power factor of doped Bi
2
O
2
Se.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d0cp01641a</identifier><ispartof>Physical chemistry chemical physics : PCCP, 2020-12, Vol.22 (46), p.2796-2714</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Hu, Kerong</creatorcontrib><creatorcontrib>Han, Jian</creatorcontrib><creatorcontrib>Xu, Ben</creatorcontrib><creatorcontrib>Lin, Yuan-Hua</creatorcontrib><title>Thermoelectric power factor of doped BiOSe: a computational study</title><title>Physical chemistry chemical physics : PCCP</title><description>In this paper, we systematically studied the thermoelectric power factor of Bi
2
O
2
Se when doped with a total of 21 main group elements. This was achieved using first principles density functional theory combined with semi-classical Boltzmann transport theory. Starting from the integral factor in Mott's formula, we thoroughly examined the thermoelectric power factor that was determined from the electronic structure. We also determined the mechanisms of action of temperature and carrier concentrations on these properties. The results show that there are different optimization strategies for the density of states (DOS) with different shapes around the Fermi level. The unconventional behaviours of the Sn, In and Tl doping cases are discussed. The present work uses a theoretical approach to study the effect of doping elements on the thermoelectric power factor of Bi
2
O
2
Se, which is valuable for optimizing its desired properties.
A theoretical study of how electronic structure affects the thermoelectric power factor of doped Bi
2
O
2
Se.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjj0LwjAUAIMoWD8Wd-H9AfWF1GrdVBQ3B7uXkLxipDUhSZH-exfR0ekObjnGZhyXHEW-0qgc8izlsscSnmZikeM27X99kw3ZKIQHIvI1FwnbF3fyjaWaVPRGgbMv8lBJFa0HW4G2jjQczPVGO5CgbOPaKKOxT1lDiK3uJmxQyTrQ9MMxm59PxfGy8EGVzptG-q78fYl__Q37Bzsn</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Hu, Kerong</creator><creator>Han, Jian</creator><creator>Xu, Ben</creator><creator>Lin, Yuan-Hua</creator><scope/></search><sort><creationdate>20201207</creationdate><title>Thermoelectric power factor of doped BiOSe: a computational study</title><author>Hu, Kerong ; Han, Jian ; Xu, Ben ; Lin, Yuan-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d0cp01641a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Kerong</creatorcontrib><creatorcontrib>Han, Jian</creatorcontrib><creatorcontrib>Xu, Ben</creatorcontrib><creatorcontrib>Lin, Yuan-Hua</creatorcontrib><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Kerong</au><au>Han, Jian</au><au>Xu, Ben</au><au>Lin, Yuan-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric power factor of doped BiOSe: a computational study</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2020-12-07</date><risdate>2020</risdate><volume>22</volume><issue>46</issue><spage>2796</spage><epage>2714</epage><pages>2796-2714</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>In this paper, we systematically studied the thermoelectric power factor of Bi
2
O
2
Se when doped with a total of 21 main group elements. This was achieved using first principles density functional theory combined with semi-classical Boltzmann transport theory. Starting from the integral factor in Mott's formula, we thoroughly examined the thermoelectric power factor that was determined from the electronic structure. We also determined the mechanisms of action of temperature and carrier concentrations on these properties. The results show that there are different optimization strategies for the density of states (DOS) with different shapes around the Fermi level. The unconventional behaviours of the Sn, In and Tl doping cases are discussed. The present work uses a theoretical approach to study the effect of doping elements on the thermoelectric power factor of Bi
2
O
2
Se, which is valuable for optimizing its desired properties.
A theoretical study of how electronic structure affects the thermoelectric power factor of doped Bi
2
O
2
Se.</abstract><doi>10.1039/d0cp01641a</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2020-12, Vol.22 (46), p.2796-2714 |
issn | 1463-9076 1463-9084 |
language | |
recordid | cdi_rsc_primary_d0cp01641a |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
title | Thermoelectric power factor of doped BiOSe: a computational study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20power%20factor%20of%20doped%20BiOSe:%20a%20computational%20study&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Hu,%20Kerong&rft.date=2020-12-07&rft.volume=22&rft.issue=46&rft.spage=2796&rft.epage=2714&rft.pages=2796-2714&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d0cp01641a&rft_dat=%3Crsc%3Ed0cp01641a%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |