Achieving ultrahigh energy storage performance in bismuth magnesium titanate film capacitors amorphous-structure engineering

Pure perovskite Bi(Mg 0.5 Ti x )O 3 (abbreviated as BMT x ) thin films are successfully fabricated on Pt/Ti/SiO 2 /Si substrates by a sol-gel method, where the excess TiO 2 with an amorphous structure is designed to improve the energy storage performance. The dielectric breakdown strength is found t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2019-11, Vol.7 (43), p.13632-13639
Hauptverfasser: Xie, Juan, Liu, Hanxing, Yao, Zhonghua, Hao, Hua, Xie, Yanjiang, Li, Zongxin, Cao, Minghe, Zhang, Shujun
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13639
container_issue 43
container_start_page 13632
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 7
creator Xie, Juan
Liu, Hanxing
Yao, Zhonghua
Hao, Hua
Xie, Yanjiang
Li, Zongxin
Cao, Minghe
Zhang, Shujun
description Pure perovskite Bi(Mg 0.5 Ti x )O 3 (abbreviated as BMT x ) thin films are successfully fabricated on Pt/Ti/SiO 2 /Si substrates by a sol-gel method, where the excess TiO 2 with an amorphous structure is designed to improve the energy storage performance. The dielectric breakdown strength is found to be abruptly improved for the sample with x ≥ 0.65 due to the synergistic contributions from the fine grain size and amorphous phase structure, which greatly decreases the leakage current. Of particular significance is that BMT x with x = 0.75 exhibits a super high recoverable energy storage density of 126 J cm −3 at 5000 kV cm −1 , demonstrating the great potential of environmentally friendly BMT x thin films for energy storage capacitor applications. Amorphous engineering can effectively tailor energy storage performances of dielectrics due to the improvement of dielectric breakdown.
doi_str_mv 10.1039/c9tc04121d
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c9tc04121d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c9tc04121d</sourcerecordid><originalsourceid>FETCH-rsc_primary_c9tc04121d3</originalsourceid><addsrcrecordid>eNqFT8FKw0AUXMSCRXvxLrwfiO4mbWyOIoof4L28ri-bV7Kb8N6uUPDjzUH06FxmYJgZxphbZ--dbboH32Vvt652HxdmXdudrR53zfbyV9ftldmonuyCvWv3bbc2X09-YPrkFKCMWXDgMAAlknAGzZNgIJhJ-kkiJk_ACY6sseQBIoZEyiVC5owJM0HPYwSPM3pesgoYJ5mHqWilWYrPRWgpD5yIZJm8MaseR6XND1-bu9eX9-e3StQfZuGIcj78vWr-878BYyNUBQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Achieving ultrahigh energy storage performance in bismuth magnesium titanate film capacitors amorphous-structure engineering</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Xie, Juan ; Liu, Hanxing ; Yao, Zhonghua ; Hao, Hua ; Xie, Yanjiang ; Li, Zongxin ; Cao, Minghe ; Zhang, Shujun</creator><creatorcontrib>Xie, Juan ; Liu, Hanxing ; Yao, Zhonghua ; Hao, Hua ; Xie, Yanjiang ; Li, Zongxin ; Cao, Minghe ; Zhang, Shujun</creatorcontrib><description>Pure perovskite Bi(Mg 0.5 Ti x )O 3 (abbreviated as BMT x ) thin films are successfully fabricated on Pt/Ti/SiO 2 /Si substrates by a sol-gel method, where the excess TiO 2 with an amorphous structure is designed to improve the energy storage performance. The dielectric breakdown strength is found to be abruptly improved for the sample with x ≥ 0.65 due to the synergistic contributions from the fine grain size and amorphous phase structure, which greatly decreases the leakage current. Of particular significance is that BMT x with x = 0.75 exhibits a super high recoverable energy storage density of 126 J cm −3 at 5000 kV cm −1 , demonstrating the great potential of environmentally friendly BMT x thin films for energy storage capacitor applications. Amorphous engineering can effectively tailor energy storage performances of dielectrics due to the improvement of dielectric breakdown.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/c9tc04121d</identifier><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2019-11, Vol.7 (43), p.13632-13639</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Xie, Juan</creatorcontrib><creatorcontrib>Liu, Hanxing</creatorcontrib><creatorcontrib>Yao, Zhonghua</creatorcontrib><creatorcontrib>Hao, Hua</creatorcontrib><creatorcontrib>Xie, Yanjiang</creatorcontrib><creatorcontrib>Li, Zongxin</creatorcontrib><creatorcontrib>Cao, Minghe</creatorcontrib><creatorcontrib>Zhang, Shujun</creatorcontrib><title>Achieving ultrahigh energy storage performance in bismuth magnesium titanate film capacitors amorphous-structure engineering</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Pure perovskite Bi(Mg 0.5 Ti x )O 3 (abbreviated as BMT x ) thin films are successfully fabricated on Pt/Ti/SiO 2 /Si substrates by a sol-gel method, where the excess TiO 2 with an amorphous structure is designed to improve the energy storage performance. The dielectric breakdown strength is found to be abruptly improved for the sample with x ≥ 0.65 due to the synergistic contributions from the fine grain size and amorphous phase structure, which greatly decreases the leakage current. Of particular significance is that BMT x with x = 0.75 exhibits a super high recoverable energy storage density of 126 J cm −3 at 5000 kV cm −1 , demonstrating the great potential of environmentally friendly BMT x thin films for energy storage capacitor applications. Amorphous engineering can effectively tailor energy storage performances of dielectrics due to the improvement of dielectric breakdown.</description><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFT8FKw0AUXMSCRXvxLrwfiO4mbWyOIoof4L28ri-bV7Kb8N6uUPDjzUH06FxmYJgZxphbZ--dbboH32Vvt652HxdmXdudrR53zfbyV9ftldmonuyCvWv3bbc2X09-YPrkFKCMWXDgMAAlknAGzZNgIJhJ-kkiJk_ACY6sseQBIoZEyiVC5owJM0HPYwSPM3pesgoYJ5mHqWilWYrPRWgpD5yIZJm8MaseR6XND1-bu9eX9-e3StQfZuGIcj78vWr-878BYyNUBQ</recordid><startdate>20191107</startdate><enddate>20191107</enddate><creator>Xie, Juan</creator><creator>Liu, Hanxing</creator><creator>Yao, Zhonghua</creator><creator>Hao, Hua</creator><creator>Xie, Yanjiang</creator><creator>Li, Zongxin</creator><creator>Cao, Minghe</creator><creator>Zhang, Shujun</creator><scope/></search><sort><creationdate>20191107</creationdate><title>Achieving ultrahigh energy storage performance in bismuth magnesium titanate film capacitors amorphous-structure engineering</title><author>Xie, Juan ; Liu, Hanxing ; Yao, Zhonghua ; Hao, Hua ; Xie, Yanjiang ; Li, Zongxin ; Cao, Minghe ; Zhang, Shujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c9tc04121d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Juan</creatorcontrib><creatorcontrib>Liu, Hanxing</creatorcontrib><creatorcontrib>Yao, Zhonghua</creatorcontrib><creatorcontrib>Hao, Hua</creatorcontrib><creatorcontrib>Xie, Yanjiang</creatorcontrib><creatorcontrib>Li, Zongxin</creatorcontrib><creatorcontrib>Cao, Minghe</creatorcontrib><creatorcontrib>Zhang, Shujun</creatorcontrib><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Juan</au><au>Liu, Hanxing</au><au>Yao, Zhonghua</au><au>Hao, Hua</au><au>Xie, Yanjiang</au><au>Li, Zongxin</au><au>Cao, Minghe</au><au>Zhang, Shujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving ultrahigh energy storage performance in bismuth magnesium titanate film capacitors amorphous-structure engineering</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2019-11-07</date><risdate>2019</risdate><volume>7</volume><issue>43</issue><spage>13632</spage><epage>13639</epage><pages>13632-13639</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Pure perovskite Bi(Mg 0.5 Ti x )O 3 (abbreviated as BMT x ) thin films are successfully fabricated on Pt/Ti/SiO 2 /Si substrates by a sol-gel method, where the excess TiO 2 with an amorphous structure is designed to improve the energy storage performance. The dielectric breakdown strength is found to be abruptly improved for the sample with x ≥ 0.65 due to the synergistic contributions from the fine grain size and amorphous phase structure, which greatly decreases the leakage current. Of particular significance is that BMT x with x = 0.75 exhibits a super high recoverable energy storage density of 126 J cm −3 at 5000 kV cm −1 , demonstrating the great potential of environmentally friendly BMT x thin films for energy storage capacitor applications. Amorphous engineering can effectively tailor energy storage performances of dielectrics due to the improvement of dielectric breakdown.</abstract><doi>10.1039/c9tc04121d</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2019-11, Vol.7 (43), p.13632-13639
issn 2050-7526
2050-7534
language
recordid cdi_rsc_primary_c9tc04121d
source Royal Society Of Chemistry Journals 2008-
title Achieving ultrahigh energy storage performance in bismuth magnesium titanate film capacitors amorphous-structure engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20ultrahigh%20energy%20storage%20performance%20in%20bismuth%20magnesium%20titanate%20film%20capacitors%20amorphous-structure%20engineering&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Xie,%20Juan&rft.date=2019-11-07&rft.volume=7&rft.issue=43&rft.spage=13632&rft.epage=13639&rft.pages=13632-13639&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/c9tc04121d&rft_dat=%3Crsc%3Ec9tc04121d%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true