Synergistic effect between atomically dispersed Fe and Co metal sites for enhanced oxygen reduction reaction
Rational design of isolated metal atom doped carbon catalysts is essential for revealing the essence of high activity for the oxygen reduction reaction (ORR), which can promote the development of robust catalysts for clean energy conversion devices. Herein, we report a simple one-step strategy to pr...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-02, Vol.8 (8), p.4369-4375 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4375 |
---|---|
container_issue | 8 |
container_start_page | 4369 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Chen, Lulu Zhang, Yelong Dong, Lile Yang, Wenxiu Liu, Xiangjian Long, Ling Liu, Changyu Dong, Shaojun Jia, Jianbo |
description | Rational design of isolated metal atom doped carbon catalysts is essential for revealing the essence of high activity for the oxygen reduction reaction (ORR), which can promote the development of robust catalysts for clean energy conversion devices. Herein, we report a simple one-step strategy to prepare Fe and Co atomically supported on N-doped nanocarbon (FeCo-IA/NC) from metal-organic frameworks with excellent ORR activity. The isolated Fe-N
4
and Co-N
4
sites are characterized by atomic-resolution aberration-corrected scanning transmission electron microscopy and X-ray absorption fine structure spectroscopy. The electrochemical results and density functional theory calculations indicate that the synergetic effect between Fe-N
4
and Co-N
4
accounts for the enhanced ORR activity. Benefiting from the large BET surface area, microporous feature, and high content (85%) of pyridinic and graphitic N, the well-designed catalyst exhibits better ORR activity (half-wave potential of 0.88 V) and Zn-air battery performances (higher open circuit potential and power density) than commercial Pt/C. This work may lay a foundation for further exploring efficient non-precious metal-based catalysts for the ORR and developing clean energy conversion devices.
Atomically dispersed Fe and Co on N-doped carbon were prepared as ORR and Zn-air battery catalysts, and the synergetic effect between Fe-N
4
and Co-N
4
was demonstrated by electrochemical results and density functional theory calculations. |
doi_str_mv | 10.1039/c9ta12516g |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9ta12516g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2364083092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-6dc5dcd4282df2b139c9e09bd89aacd059dafcc111857f03399b08bf0928f6b3</originalsourceid><addsrcrecordid>eNpF0MFLwzAUBvAgCo65i3ch4E2oJs3aJcdRdAoDD-5e0peX2dE1M8nQ_vdmm8xc3nf4vRf4CLnl7JEzoZ5ARc3zgpfrCzLKWcGy2VSVl-cs5TWZhLBh6UnGSqVGpPsYevTrNsQWKFqLEGmD8Ruxpzq6bQu66wZq2rBDH9DQF6S6N7RydItRdzS0EQO1zlPsP3UPibifYZ3WPZo9xNYdkj6GG3JldRdw8jfHZPXyvKpes-X74q2aLzMQXMasNFAYMNNc5sbmDRcKFDLVGKm0BsMKZbQF4JzLYmaZEEo1TDaWqVzashFjcn86u_Pua48h1hu39336sc5FOWVSJJnUw0mBdyF4tPXOt1vth5qz-tBnXanV_NjnIuG7E_YBzu6_b_ELNVpzog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2364083092</pqid></control><display><type>article</type><title>Synergistic effect between atomically dispersed Fe and Co metal sites for enhanced oxygen reduction reaction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chen, Lulu ; Zhang, Yelong ; Dong, Lile ; Yang, Wenxiu ; Liu, Xiangjian ; Long, Ling ; Liu, Changyu ; Dong, Shaojun ; Jia, Jianbo</creator><creatorcontrib>Chen, Lulu ; Zhang, Yelong ; Dong, Lile ; Yang, Wenxiu ; Liu, Xiangjian ; Long, Ling ; Liu, Changyu ; Dong, Shaojun ; Jia, Jianbo</creatorcontrib><description>Rational design of isolated metal atom doped carbon catalysts is essential for revealing the essence of high activity for the oxygen reduction reaction (ORR), which can promote the development of robust catalysts for clean energy conversion devices. Herein, we report a simple one-step strategy to prepare Fe and Co atomically supported on N-doped nanocarbon (FeCo-IA/NC) from metal-organic frameworks with excellent ORR activity. The isolated Fe-N
4
and Co-N
4
sites are characterized by atomic-resolution aberration-corrected scanning transmission electron microscopy and X-ray absorption fine structure spectroscopy. The electrochemical results and density functional theory calculations indicate that the synergetic effect between Fe-N
4
and Co-N
4
accounts for the enhanced ORR activity. Benefiting from the large BET surface area, microporous feature, and high content (85%) of pyridinic and graphitic N, the well-designed catalyst exhibits better ORR activity (half-wave potential of 0.88 V) and Zn-air battery performances (higher open circuit potential and power density) than commercial Pt/C. This work may lay a foundation for further exploring efficient non-precious metal-based catalysts for the ORR and developing clean energy conversion devices.
Atomically dispersed Fe and Co on N-doped carbon were prepared as ORR and Zn-air battery catalysts, and the synergetic effect between Fe-N
4
and Co-N
4
was demonstrated by electrochemical results and density functional theory calculations.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta12516g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Chemical reduction ; Clean energy ; Clean technology ; Cobalt ; Density functional theory ; Electrochemistry ; Energy conversion ; Fine structure ; Iron ; Metal air batteries ; Metal-organic frameworks ; Metals ; Open circuit voltage ; Oxygen ; Oxygen reduction reactions ; Scanning transmission electron microscopy ; Spectroscopy ; Synergistic effect ; Transmission electron microscopy ; Ultrastructure ; X ray absorption ; Zinc ; Zinc-oxygen batteries</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-02, Vol.8 (8), p.4369-4375</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-6dc5dcd4282df2b139c9e09bd89aacd059dafcc111857f03399b08bf0928f6b3</citedby><cites>FETCH-LOGICAL-c318t-6dc5dcd4282df2b139c9e09bd89aacd059dafcc111857f03399b08bf0928f6b3</cites><orcidid>0000-0002-5408-2000 ; 0000-0002-0263-6577 ; 0000-0002-8185-0191 ; 0000-0002-9417-2721 ; 0000-0003-0671-1527 ; 0000-0003-1850-0292 ; 0000-0002-5901-5288 ; 0000-0002-2748-2869 ; 0000-0002-8702-2792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Lulu</creatorcontrib><creatorcontrib>Zhang, Yelong</creatorcontrib><creatorcontrib>Dong, Lile</creatorcontrib><creatorcontrib>Yang, Wenxiu</creatorcontrib><creatorcontrib>Liu, Xiangjian</creatorcontrib><creatorcontrib>Long, Ling</creatorcontrib><creatorcontrib>Liu, Changyu</creatorcontrib><creatorcontrib>Dong, Shaojun</creatorcontrib><creatorcontrib>Jia, Jianbo</creatorcontrib><title>Synergistic effect between atomically dispersed Fe and Co metal sites for enhanced oxygen reduction reaction</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Rational design of isolated metal atom doped carbon catalysts is essential for revealing the essence of high activity for the oxygen reduction reaction (ORR), which can promote the development of robust catalysts for clean energy conversion devices. Herein, we report a simple one-step strategy to prepare Fe and Co atomically supported on N-doped nanocarbon (FeCo-IA/NC) from metal-organic frameworks with excellent ORR activity. The isolated Fe-N
4
and Co-N
4
sites are characterized by atomic-resolution aberration-corrected scanning transmission electron microscopy and X-ray absorption fine structure spectroscopy. The electrochemical results and density functional theory calculations indicate that the synergetic effect between Fe-N
4
and Co-N
4
accounts for the enhanced ORR activity. Benefiting from the large BET surface area, microporous feature, and high content (85%) of pyridinic and graphitic N, the well-designed catalyst exhibits better ORR activity (half-wave potential of 0.88 V) and Zn-air battery performances (higher open circuit potential and power density) than commercial Pt/C. This work may lay a foundation for further exploring efficient non-precious metal-based catalysts for the ORR and developing clean energy conversion devices.
Atomically dispersed Fe and Co on N-doped carbon were prepared as ORR and Zn-air battery catalysts, and the synergetic effect between Fe-N
4
and Co-N
4
was demonstrated by electrochemical results and density functional theory calculations.</description><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Clean energy</subject><subject>Clean technology</subject><subject>Cobalt</subject><subject>Density functional theory</subject><subject>Electrochemistry</subject><subject>Energy conversion</subject><subject>Fine structure</subject><subject>Iron</subject><subject>Metal air batteries</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Open circuit voltage</subject><subject>Oxygen</subject><subject>Oxygen reduction reactions</subject><subject>Scanning transmission electron microscopy</subject><subject>Spectroscopy</subject><subject>Synergistic effect</subject><subject>Transmission electron microscopy</subject><subject>Ultrastructure</subject><subject>X ray absorption</subject><subject>Zinc</subject><subject>Zinc-oxygen batteries</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpF0MFLwzAUBvAgCo65i3ch4E2oJs3aJcdRdAoDD-5e0peX2dE1M8nQ_vdmm8xc3nf4vRf4CLnl7JEzoZ5ARc3zgpfrCzLKWcGy2VSVl-cs5TWZhLBh6UnGSqVGpPsYevTrNsQWKFqLEGmD8Ruxpzq6bQu66wZq2rBDH9DQF6S6N7RydItRdzS0EQO1zlPsP3UPibifYZ3WPZo9xNYdkj6GG3JldRdw8jfHZPXyvKpes-X74q2aLzMQXMasNFAYMNNc5sbmDRcKFDLVGKm0BsMKZbQF4JzLYmaZEEo1TDaWqVzashFjcn86u_Pua48h1hu39336sc5FOWVSJJnUw0mBdyF4tPXOt1vth5qz-tBnXanV_NjnIuG7E_YBzu6_b_ELNVpzog</recordid><startdate>20200228</startdate><enddate>20200228</enddate><creator>Chen, Lulu</creator><creator>Zhang, Yelong</creator><creator>Dong, Lile</creator><creator>Yang, Wenxiu</creator><creator>Liu, Xiangjian</creator><creator>Long, Ling</creator><creator>Liu, Changyu</creator><creator>Dong, Shaojun</creator><creator>Jia, Jianbo</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5408-2000</orcidid><orcidid>https://orcid.org/0000-0002-0263-6577</orcidid><orcidid>https://orcid.org/0000-0002-8185-0191</orcidid><orcidid>https://orcid.org/0000-0002-9417-2721</orcidid><orcidid>https://orcid.org/0000-0003-0671-1527</orcidid><orcidid>https://orcid.org/0000-0003-1850-0292</orcidid><orcidid>https://orcid.org/0000-0002-5901-5288</orcidid><orcidid>https://orcid.org/0000-0002-2748-2869</orcidid><orcidid>https://orcid.org/0000-0002-8702-2792</orcidid></search><sort><creationdate>20200228</creationdate><title>Synergistic effect between atomically dispersed Fe and Co metal sites for enhanced oxygen reduction reaction</title><author>Chen, Lulu ; Zhang, Yelong ; Dong, Lile ; Yang, Wenxiu ; Liu, Xiangjian ; Long, Ling ; Liu, Changyu ; Dong, Shaojun ; Jia, Jianbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-6dc5dcd4282df2b139c9e09bd89aacd059dafcc111857f03399b08bf0928f6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Clean energy</topic><topic>Clean technology</topic><topic>Cobalt</topic><topic>Density functional theory</topic><topic>Electrochemistry</topic><topic>Energy conversion</topic><topic>Fine structure</topic><topic>Iron</topic><topic>Metal air batteries</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Open circuit voltage</topic><topic>Oxygen</topic><topic>Oxygen reduction reactions</topic><topic>Scanning transmission electron microscopy</topic><topic>Spectroscopy</topic><topic>Synergistic effect</topic><topic>Transmission electron microscopy</topic><topic>Ultrastructure</topic><topic>X ray absorption</topic><topic>Zinc</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lulu</creatorcontrib><creatorcontrib>Zhang, Yelong</creatorcontrib><creatorcontrib>Dong, Lile</creatorcontrib><creatorcontrib>Yang, Wenxiu</creatorcontrib><creatorcontrib>Liu, Xiangjian</creatorcontrib><creatorcontrib>Long, Ling</creatorcontrib><creatorcontrib>Liu, Changyu</creatorcontrib><creatorcontrib>Dong, Shaojun</creatorcontrib><creatorcontrib>Jia, Jianbo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lulu</au><au>Zhang, Yelong</au><au>Dong, Lile</au><au>Yang, Wenxiu</au><au>Liu, Xiangjian</au><au>Long, Ling</au><au>Liu, Changyu</au><au>Dong, Shaojun</au><au>Jia, Jianbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic effect between atomically dispersed Fe and Co metal sites for enhanced oxygen reduction reaction</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-02-28</date><risdate>2020</risdate><volume>8</volume><issue>8</issue><spage>4369</spage><epage>4375</epage><pages>4369-4375</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Rational design of isolated metal atom doped carbon catalysts is essential for revealing the essence of high activity for the oxygen reduction reaction (ORR), which can promote the development of robust catalysts for clean energy conversion devices. Herein, we report a simple one-step strategy to prepare Fe and Co atomically supported on N-doped nanocarbon (FeCo-IA/NC) from metal-organic frameworks with excellent ORR activity. The isolated Fe-N
4
and Co-N
4
sites are characterized by atomic-resolution aberration-corrected scanning transmission electron microscopy and X-ray absorption fine structure spectroscopy. The electrochemical results and density functional theory calculations indicate that the synergetic effect between Fe-N
4
and Co-N
4
accounts for the enhanced ORR activity. Benefiting from the large BET surface area, microporous feature, and high content (85%) of pyridinic and graphitic N, the well-designed catalyst exhibits better ORR activity (half-wave potential of 0.88 V) and Zn-air battery performances (higher open circuit potential and power density) than commercial Pt/C. This work may lay a foundation for further exploring efficient non-precious metal-based catalysts for the ORR and developing clean energy conversion devices.
Atomically dispersed Fe and Co on N-doped carbon were prepared as ORR and Zn-air battery catalysts, and the synergetic effect between Fe-N
4
and Co-N
4
was demonstrated by electrochemical results and density functional theory calculations.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta12516g</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5408-2000</orcidid><orcidid>https://orcid.org/0000-0002-0263-6577</orcidid><orcidid>https://orcid.org/0000-0002-8185-0191</orcidid><orcidid>https://orcid.org/0000-0002-9417-2721</orcidid><orcidid>https://orcid.org/0000-0003-0671-1527</orcidid><orcidid>https://orcid.org/0000-0003-1850-0292</orcidid><orcidid>https://orcid.org/0000-0002-5901-5288</orcidid><orcidid>https://orcid.org/0000-0002-2748-2869</orcidid><orcidid>https://orcid.org/0000-0002-8702-2792</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-02, Vol.8 (8), p.4369-4375 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_rsc_primary_c9ta12516g |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Catalysts Chemical reduction Clean energy Clean technology Cobalt Density functional theory Electrochemistry Energy conversion Fine structure Iron Metal air batteries Metal-organic frameworks Metals Open circuit voltage Oxygen Oxygen reduction reactions Scanning transmission electron microscopy Spectroscopy Synergistic effect Transmission electron microscopy Ultrastructure X ray absorption Zinc Zinc-oxygen batteries |
title | Synergistic effect between atomically dispersed Fe and Co metal sites for enhanced oxygen reduction reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20effect%20between%20atomically%20dispersed%20Fe%20and%20Co%20metal%20sites%20for%20enhanced%20oxygen%20reduction%20reaction&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Chen,%20Lulu&rft.date=2020-02-28&rft.volume=8&rft.issue=8&rft.spage=4369&rft.epage=4375&rft.pages=4369-4375&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta12516g&rft_dat=%3Cproquest_rsc_p%3E2364083092%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2364083092&rft_id=info:pmid/&rfr_iscdi=true |