A super-thermostable, flexible supercapacitor for ultralight and high performance devices

The design and optimization of new composite electrolytes and nanostructured carbon electrodes constituting electrochemical energy storage devices such as supercapacitors are definitely important because of the increasing challenges of providing reliable electrical energy in harsh environments. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020, Vol.8 (2), p.532-542
Hauptverfasser: Kim, Dong Won, Jung, Sung Mi, Jung, Hyun Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 542
container_issue 2
container_start_page 532
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Kim, Dong Won
Jung, Sung Mi
Jung, Hyun Young
description The design and optimization of new composite electrolytes and nanostructured carbon electrodes constituting electrochemical energy storage devices such as supercapacitors are definitely important because of the increasing challenges of providing reliable electrical energy in harsh environments. Here, we develop super-thermostable, flexible, and high-performance supercapacitors operating at high temperatures and under mechanical stresses. The multifunctional supercapacitors are fabricated by integrating an ionic liquid-fumed silica nanoparticle composite polymer electrolyte and 3D graphene aerogel electrodes with controlled hybrid porous structures. The thermal and electrochemical stability of the composite polymer electrolyte and excellent compatibility between the electrolyte and the porous aerogel electrodes lead to high-performance supercapacitors with an extremely high specific capacitance of 1007 F g −1 and an energy density of 1134 W h kg −1 at a high temperature of 200 °C. In a flexibility test in dynamic mode, the device exhibits extreme long-term stability and mechanical durability after bending cycles even at high temperatures. This research provides a rational strategy for light weight, mechanically robust, high-performance, and high-temperature operation energy storage systems operating under harsh circumstances. High-temperature operation and flexible supercapacitors are designed from graphene aerogel electrodes and IL-FSN based polymer composite electrolytes, achieving a high capacitance of 1007 F g −1 and an energy density of 1134 Wh kg −1 at 200 °C.
doi_str_mv 10.1039/c9ta11275h
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9ta11275h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331819802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b5d61e33f23ad8f4b53e51f292e00d08ff8671e2e880c3fbbcd32f083d139e043</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWGov3oWAN3F1knS3ybEUv6DgpR48Ldlk4m7ZdtckK_rfG12pA8M8eD_mwSPknMENA6FujYqaMb7I6yMy4ZBDtpir4vigpTwlsxC2kEYCFEpNyOuShqFHn8Ua_a4LUVctXlPX4meT1Gga3WvTxM5Tl3Zoo9dt81ZHqveW1knRBCVrp_cGqcWPxmA4IydOtwFnf3dKXu7vNqvHbP388LRarjMjchWzKrcFQyEcF9pKN69ygTlzXHEEsCCdk8WCIUcpwQhXVcYK7kAKy4RCmIspuRz_9r57HzDEctsNfp8iSy4Ek0xJ4Im6GinjuxA8urL3zU77r5JB-dNeuVKb5W97jwm-GGEfzIH7b1d8A_AdbLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331819802</pqid></control><display><type>article</type><title>A super-thermostable, flexible supercapacitor for ultralight and high performance devices</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kim, Dong Won ; Jung, Sung Mi ; Jung, Hyun Young</creator><creatorcontrib>Kim, Dong Won ; Jung, Sung Mi ; Jung, Hyun Young</creatorcontrib><description>The design and optimization of new composite electrolytes and nanostructured carbon electrodes constituting electrochemical energy storage devices such as supercapacitors are definitely important because of the increasing challenges of providing reliable electrical energy in harsh environments. Here, we develop super-thermostable, flexible, and high-performance supercapacitors operating at high temperatures and under mechanical stresses. The multifunctional supercapacitors are fabricated by integrating an ionic liquid-fumed silica nanoparticle composite polymer electrolyte and 3D graphene aerogel electrodes with controlled hybrid porous structures. The thermal and electrochemical stability of the composite polymer electrolyte and excellent compatibility between the electrolyte and the porous aerogel electrodes lead to high-performance supercapacitors with an extremely high specific capacitance of 1007 F g −1 and an energy density of 1134 W h kg −1 at a high temperature of 200 °C. In a flexibility test in dynamic mode, the device exhibits extreme long-term stability and mechanical durability after bending cycles even at high temperatures. This research provides a rational strategy for light weight, mechanically robust, high-performance, and high-temperature operation energy storage systems operating under harsh circumstances. High-temperature operation and flexible supercapacitors are designed from graphene aerogel electrodes and IL-FSN based polymer composite electrolytes, achieving a high capacitance of 1007 F g −1 and an energy density of 1134 Wh kg −1 at 200 °C.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta11275h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aerogels ; Bending machines ; Capacitance ; Composite materials ; Control stability ; Design optimization ; Durability ; Dynamic stability ; Electrochemistry ; Electrodes ; Electrolytes ; Electronic devices ; Energy storage ; Flux density ; Graphene ; Harsh environments ; High temperature ; Ionic liquids ; Nanoparticles ; Polymers ; Silica ; Silica fume ; Silicon dioxide ; Storage systems ; Supercapacitors ; Three dimensional composites ; Weight reduction</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020, Vol.8 (2), p.532-542</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b5d61e33f23ad8f4b53e51f292e00d08ff8671e2e880c3fbbcd32f083d139e043</citedby><cites>FETCH-LOGICAL-c359t-b5d61e33f23ad8f4b53e51f292e00d08ff8671e2e880c3fbbcd32f083d139e043</cites><orcidid>0000-0002-2264-9762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,27910,27911,27912</link.rule.ids></links><search><creatorcontrib>Kim, Dong Won</creatorcontrib><creatorcontrib>Jung, Sung Mi</creatorcontrib><creatorcontrib>Jung, Hyun Young</creatorcontrib><title>A super-thermostable, flexible supercapacitor for ultralight and high performance devices</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The design and optimization of new composite electrolytes and nanostructured carbon electrodes constituting electrochemical energy storage devices such as supercapacitors are definitely important because of the increasing challenges of providing reliable electrical energy in harsh environments. Here, we develop super-thermostable, flexible, and high-performance supercapacitors operating at high temperatures and under mechanical stresses. The multifunctional supercapacitors are fabricated by integrating an ionic liquid-fumed silica nanoparticle composite polymer electrolyte and 3D graphene aerogel electrodes with controlled hybrid porous structures. The thermal and electrochemical stability of the composite polymer electrolyte and excellent compatibility between the electrolyte and the porous aerogel electrodes lead to high-performance supercapacitors with an extremely high specific capacitance of 1007 F g −1 and an energy density of 1134 W h kg −1 at a high temperature of 200 °C. In a flexibility test in dynamic mode, the device exhibits extreme long-term stability and mechanical durability after bending cycles even at high temperatures. This research provides a rational strategy for light weight, mechanically robust, high-performance, and high-temperature operation energy storage systems operating under harsh circumstances. High-temperature operation and flexible supercapacitors are designed from graphene aerogel electrodes and IL-FSN based polymer composite electrolytes, achieving a high capacitance of 1007 F g −1 and an energy density of 1134 Wh kg −1 at 200 °C.</description><subject>Aerogels</subject><subject>Bending machines</subject><subject>Capacitance</subject><subject>Composite materials</subject><subject>Control stability</subject><subject>Design optimization</subject><subject>Durability</subject><subject>Dynamic stability</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electronic devices</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Graphene</subject><subject>Harsh environments</subject><subject>High temperature</subject><subject>Ionic liquids</subject><subject>Nanoparticles</subject><subject>Polymers</subject><subject>Silica</subject><subject>Silica fume</subject><subject>Silicon dioxide</subject><subject>Storage systems</subject><subject>Supercapacitors</subject><subject>Three dimensional composites</subject><subject>Weight reduction</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWGov3oWAN3F1knS3ybEUv6DgpR48Ldlk4m7ZdtckK_rfG12pA8M8eD_mwSPknMENA6FujYqaMb7I6yMy4ZBDtpir4vigpTwlsxC2kEYCFEpNyOuShqFHn8Ua_a4LUVctXlPX4meT1Gga3WvTxM5Tl3Zoo9dt81ZHqveW1knRBCVrp_cGqcWPxmA4IydOtwFnf3dKXu7vNqvHbP388LRarjMjchWzKrcFQyEcF9pKN69ygTlzXHEEsCCdk8WCIUcpwQhXVcYK7kAKy4RCmIspuRz_9r57HzDEctsNfp8iSy4Ek0xJ4Im6GinjuxA8urL3zU77r5JB-dNeuVKb5W97jwm-GGEfzIH7b1d8A_AdbLA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kim, Dong Won</creator><creator>Jung, Sung Mi</creator><creator>Jung, Hyun Young</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2264-9762</orcidid></search><sort><creationdate>2020</creationdate><title>A super-thermostable, flexible supercapacitor for ultralight and high performance devices</title><author>Kim, Dong Won ; Jung, Sung Mi ; Jung, Hyun Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b5d61e33f23ad8f4b53e51f292e00d08ff8671e2e880c3fbbcd32f083d139e043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerogels</topic><topic>Bending machines</topic><topic>Capacitance</topic><topic>Composite materials</topic><topic>Control stability</topic><topic>Design optimization</topic><topic>Durability</topic><topic>Dynamic stability</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electronic devices</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Graphene</topic><topic>Harsh environments</topic><topic>High temperature</topic><topic>Ionic liquids</topic><topic>Nanoparticles</topic><topic>Polymers</topic><topic>Silica</topic><topic>Silica fume</topic><topic>Silicon dioxide</topic><topic>Storage systems</topic><topic>Supercapacitors</topic><topic>Three dimensional composites</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dong Won</creatorcontrib><creatorcontrib>Jung, Sung Mi</creatorcontrib><creatorcontrib>Jung, Hyun Young</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dong Won</au><au>Jung, Sung Mi</au><au>Jung, Hyun Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A super-thermostable, flexible supercapacitor for ultralight and high performance devices</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020</date><risdate>2020</risdate><volume>8</volume><issue>2</issue><spage>532</spage><epage>542</epage><pages>532-542</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The design and optimization of new composite electrolytes and nanostructured carbon electrodes constituting electrochemical energy storage devices such as supercapacitors are definitely important because of the increasing challenges of providing reliable electrical energy in harsh environments. Here, we develop super-thermostable, flexible, and high-performance supercapacitors operating at high temperatures and under mechanical stresses. The multifunctional supercapacitors are fabricated by integrating an ionic liquid-fumed silica nanoparticle composite polymer electrolyte and 3D graphene aerogel electrodes with controlled hybrid porous structures. The thermal and electrochemical stability of the composite polymer electrolyte and excellent compatibility between the electrolyte and the porous aerogel electrodes lead to high-performance supercapacitors with an extremely high specific capacitance of 1007 F g −1 and an energy density of 1134 W h kg −1 at a high temperature of 200 °C. In a flexibility test in dynamic mode, the device exhibits extreme long-term stability and mechanical durability after bending cycles even at high temperatures. This research provides a rational strategy for light weight, mechanically robust, high-performance, and high-temperature operation energy storage systems operating under harsh circumstances. High-temperature operation and flexible supercapacitors are designed from graphene aerogel electrodes and IL-FSN based polymer composite electrolytes, achieving a high capacitance of 1007 F g −1 and an energy density of 1134 Wh kg −1 at 200 °C.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta11275h</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2264-9762</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020, Vol.8 (2), p.532-542
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_c9ta11275h
source Royal Society Of Chemistry Journals 2008-
subjects Aerogels
Bending machines
Capacitance
Composite materials
Control stability
Design optimization
Durability
Dynamic stability
Electrochemistry
Electrodes
Electrolytes
Electronic devices
Energy storage
Flux density
Graphene
Harsh environments
High temperature
Ionic liquids
Nanoparticles
Polymers
Silica
Silica fume
Silicon dioxide
Storage systems
Supercapacitors
Three dimensional composites
Weight reduction
title A super-thermostable, flexible supercapacitor for ultralight and high performance devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20super-thermostable,%20flexible%20supercapacitor%20for%20ultralight%20and%20high%20performance%20devices&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Kim,%20Dong%20Won&rft.date=2020&rft.volume=8&rft.issue=2&rft.spage=532&rft.epage=542&rft.pages=532-542&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta11275h&rft_dat=%3Cproquest_rsc_p%3E2331819802%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331819802&rft_id=info:pmid/&rfr_iscdi=true