Single atom-supported MXene: how single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation

A central topic for the electrocatalytic N 2 reduction reaction (ENRR) lies in the search for facile electrocatalysts under ambient conditions. Inspired by recent works on stabilizing single atoms with Ti 3 C 2 T x MXene nanosheets, herein, we designed a series of single atoms supported on Ti 2 CO 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (48), p.2762-27631
Hauptverfasser: Huang, Bin, Li, Neng, Ong, Wee-Jun, Zhou, Naigen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27631
container_issue 48
container_start_page 2762
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Huang, Bin
Li, Neng
Ong, Wee-Jun
Zhou, Naigen
description A central topic for the electrocatalytic N 2 reduction reaction (ENRR) lies in the search for facile electrocatalysts under ambient conditions. Inspired by recent works on stabilizing single atoms with Ti 3 C 2 T x MXene nanosheets, herein, we designed a series of single atoms supported on Ti 2 CO 2 and Mo 2 CO 2 MXene monolayers as efficient electrocatalysts for the ENRR by a well-defined first-principles calculation. Our calculation results revealed that single Ru or Mo atom anchored Mo 2 CO 2 or Ti 2 CO 2 possessed high ENRR activity, and the calculated limiting potentials of Ti 2 CO 2 were more negative than those of Mo 2 CO 2 due to the high conductivity of Mo 2 CO 2 . Moreover, N 2 can be efficiently reduced to NH 3 on Ti@Mo 2 CO 2 via different reaction mechanisms with a record limiting potential (−0.64 V). Furthermore, the activity and selectivity of the ENRR on Mo@Mo 2 CO 2 were evaluated by comparing the Gibbs free energy of each dinitrogen and hydrogen as well as the first dinitrogen protonation and hydrogen adsorption. We found that N 2 reduction proceeds via a distal or hybrid mechanism with an overpotential down to 0.16 or 0.19 V, indicating Mo@Mo 2 CO 2 as a robust electrocatalyst for the ENRR. This work opens up an exciting new avenue for the rational design of high-efficiency MXene-based nanocomposites for artificial N 2 fixation. A series of single atom supported on Ti 2 CO 2 and Mo 2 CO 2 MXenes were systematically explored as efficient electrocatalysts for electro-catalytic N 2 reduction. We demonstrate that Ru and Mo atoms anchored MXenes are highly activity.
doi_str_mv 10.1039/c9ta09776g
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9ta09776g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2323046914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-426a11faa16fc0b652056b7cb2f63c27016ab778afe5cb5b3d5c63c7427c15693</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRsNRevAsRb8Jqsh9J460UrULFgxW8LdlsspuyTdYkq_Yn-K9NW6035zLz8j7MMDNRdIrgFYIpvebUM0gJwfVBNEhgDmOSUXy4r8fj42jk3BKGGEOIKR1EX89K160AzJtV7PquM9aLCjy-Ci1uQGM-gNsC8QZQPHbKC8CZZ-3aeQd8rwXwjQCNqhvAuFfvyq8B0xVwohW_2kiwVdbwRoQ2rAVaBVULDaT6ZF4ZfRIdSdY6MfrJw-jl7nYxvY_nT7OH6WQe8yxHPs4SzBCSjCEsOSxxHpbDJeFlInHKEwIRZiUhYyZFzsu8TKucB4NkCeEoxzQdRhe7vp01b71wvlia3uowskjSJIUZpigL1OWO4tY4Z4UsOqtWzK4LBIvNtYspXUy2154F-GwHW8f33N83gn_-n190lUy_AVq8ik0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323046914</pqid></control><display><type>article</type><title>Single atom-supported MXene: how single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Huang, Bin ; Li, Neng ; Ong, Wee-Jun ; Zhou, Naigen</creator><creatorcontrib>Huang, Bin ; Li, Neng ; Ong, Wee-Jun ; Zhou, Naigen</creatorcontrib><description>A central topic for the electrocatalytic N 2 reduction reaction (ENRR) lies in the search for facile electrocatalysts under ambient conditions. Inspired by recent works on stabilizing single atoms with Ti 3 C 2 T x MXene nanosheets, herein, we designed a series of single atoms supported on Ti 2 CO 2 and Mo 2 CO 2 MXene monolayers as efficient electrocatalysts for the ENRR by a well-defined first-principles calculation. Our calculation results revealed that single Ru or Mo atom anchored Mo 2 CO 2 or Ti 2 CO 2 possessed high ENRR activity, and the calculated limiting potentials of Ti 2 CO 2 were more negative than those of Mo 2 CO 2 due to the high conductivity of Mo 2 CO 2 . Moreover, N 2 can be efficiently reduced to NH 3 on Ti@Mo 2 CO 2 via different reaction mechanisms with a record limiting potential (−0.64 V). Furthermore, the activity and selectivity of the ENRR on Mo@Mo 2 CO 2 were evaluated by comparing the Gibbs free energy of each dinitrogen and hydrogen as well as the first dinitrogen protonation and hydrogen adsorption. We found that N 2 reduction proceeds via a distal or hybrid mechanism with an overpotential down to 0.16 or 0.19 V, indicating Mo@Mo 2 CO 2 as a robust electrocatalyst for the ENRR. This work opens up an exciting new avenue for the rational design of high-efficiency MXene-based nanocomposites for artificial N 2 fixation. A series of single atom supported on Ti 2 CO 2 and Mo 2 CO 2 MXenes were systematically explored as efficient electrocatalysts for electro-catalytic N 2 reduction. We demonstrate that Ru and Mo atoms anchored MXenes are highly activity.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta09776g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonia ; Catalysts ; Chemical reduction ; Constraining ; Electrocatalysts ; Electrochemistry ; First principles ; Free energy ; Gibbs free energy ; Mathematical analysis ; MXenes ; Nanocomposites ; Nitrogen fixation ; Nitrogenation ; Protonation ; Reaction mechanisms ; Selectivity</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (48), p.2762-27631</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-426a11faa16fc0b652056b7cb2f63c27016ab778afe5cb5b3d5c63c7427c15693</citedby><cites>FETCH-LOGICAL-c451t-426a11faa16fc0b652056b7cb2f63c27016ab778afe5cb5b3d5c63c7427c15693</cites><orcidid>0000-0001-9633-6702 ; 0000-0002-5124-1934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Huang, Bin</creatorcontrib><creatorcontrib>Li, Neng</creatorcontrib><creatorcontrib>Ong, Wee-Jun</creatorcontrib><creatorcontrib>Zhou, Naigen</creatorcontrib><title>Single atom-supported MXene: how single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>A central topic for the electrocatalytic N 2 reduction reaction (ENRR) lies in the search for facile electrocatalysts under ambient conditions. Inspired by recent works on stabilizing single atoms with Ti 3 C 2 T x MXene nanosheets, herein, we designed a series of single atoms supported on Ti 2 CO 2 and Mo 2 CO 2 MXene monolayers as efficient electrocatalysts for the ENRR by a well-defined first-principles calculation. Our calculation results revealed that single Ru or Mo atom anchored Mo 2 CO 2 or Ti 2 CO 2 possessed high ENRR activity, and the calculated limiting potentials of Ti 2 CO 2 were more negative than those of Mo 2 CO 2 due to the high conductivity of Mo 2 CO 2 . Moreover, N 2 can be efficiently reduced to NH 3 on Ti@Mo 2 CO 2 via different reaction mechanisms with a record limiting potential (−0.64 V). Furthermore, the activity and selectivity of the ENRR on Mo@Mo 2 CO 2 were evaluated by comparing the Gibbs free energy of each dinitrogen and hydrogen as well as the first dinitrogen protonation and hydrogen adsorption. We found that N 2 reduction proceeds via a distal or hybrid mechanism with an overpotential down to 0.16 or 0.19 V, indicating Mo@Mo 2 CO 2 as a robust electrocatalyst for the ENRR. This work opens up an exciting new avenue for the rational design of high-efficiency MXene-based nanocomposites for artificial N 2 fixation. A series of single atom supported on Ti 2 CO 2 and Mo 2 CO 2 MXenes were systematically explored as efficient electrocatalysts for electro-catalytic N 2 reduction. We demonstrate that Ru and Mo atoms anchored MXenes are highly activity.</description><subject>Ammonia</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Constraining</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>First principles</subject><subject>Free energy</subject><subject>Gibbs free energy</subject><subject>Mathematical analysis</subject><subject>MXenes</subject><subject>Nanocomposites</subject><subject>Nitrogen fixation</subject><subject>Nitrogenation</subject><subject>Protonation</subject><subject>Reaction mechanisms</subject><subject>Selectivity</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhhdRsNRevAsRb8Jqsh9J460UrULFgxW8LdlsspuyTdYkq_Yn-K9NW6035zLz8j7MMDNRdIrgFYIpvebUM0gJwfVBNEhgDmOSUXy4r8fj42jk3BKGGEOIKR1EX89K160AzJtV7PquM9aLCjy-Ci1uQGM-gNsC8QZQPHbKC8CZZ-3aeQd8rwXwjQCNqhvAuFfvyq8B0xVwohW_2kiwVdbwRoQ2rAVaBVULDaT6ZF4ZfRIdSdY6MfrJw-jl7nYxvY_nT7OH6WQe8yxHPs4SzBCSjCEsOSxxHpbDJeFlInHKEwIRZiUhYyZFzsu8TKucB4NkCeEoxzQdRhe7vp01b71wvlia3uowskjSJIUZpigL1OWO4tY4Z4UsOqtWzK4LBIvNtYspXUy2154F-GwHW8f33N83gn_-n190lUy_AVq8ik0</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Huang, Bin</creator><creator>Li, Neng</creator><creator>Ong, Wee-Jun</creator><creator>Zhou, Naigen</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9633-6702</orcidid><orcidid>https://orcid.org/0000-0002-5124-1934</orcidid></search><sort><creationdate>2019</creationdate><title>Single atom-supported MXene: how single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation</title><author>Huang, Bin ; Li, Neng ; Ong, Wee-Jun ; Zhou, Naigen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-426a11faa16fc0b652056b7cb2f63c27016ab778afe5cb5b3d5c63c7427c15693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ammonia</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Constraining</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>First principles</topic><topic>Free energy</topic><topic>Gibbs free energy</topic><topic>Mathematical analysis</topic><topic>MXenes</topic><topic>Nanocomposites</topic><topic>Nitrogen fixation</topic><topic>Nitrogenation</topic><topic>Protonation</topic><topic>Reaction mechanisms</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Bin</creatorcontrib><creatorcontrib>Li, Neng</creatorcontrib><creatorcontrib>Ong, Wee-Jun</creatorcontrib><creatorcontrib>Zhou, Naigen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Bin</au><au>Li, Neng</au><au>Ong, Wee-Jun</au><au>Zhou, Naigen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single atom-supported MXene: how single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>48</issue><spage>2762</spage><epage>27631</epage><pages>2762-27631</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>A central topic for the electrocatalytic N 2 reduction reaction (ENRR) lies in the search for facile electrocatalysts under ambient conditions. Inspired by recent works on stabilizing single atoms with Ti 3 C 2 T x MXene nanosheets, herein, we designed a series of single atoms supported on Ti 2 CO 2 and Mo 2 CO 2 MXene monolayers as efficient electrocatalysts for the ENRR by a well-defined first-principles calculation. Our calculation results revealed that single Ru or Mo atom anchored Mo 2 CO 2 or Ti 2 CO 2 possessed high ENRR activity, and the calculated limiting potentials of Ti 2 CO 2 were more negative than those of Mo 2 CO 2 due to the high conductivity of Mo 2 CO 2 . Moreover, N 2 can be efficiently reduced to NH 3 on Ti@Mo 2 CO 2 via different reaction mechanisms with a record limiting potential (−0.64 V). Furthermore, the activity and selectivity of the ENRR on Mo@Mo 2 CO 2 were evaluated by comparing the Gibbs free energy of each dinitrogen and hydrogen as well as the first dinitrogen protonation and hydrogen adsorption. We found that N 2 reduction proceeds via a distal or hybrid mechanism with an overpotential down to 0.16 or 0.19 V, indicating Mo@Mo 2 CO 2 as a robust electrocatalyst for the ENRR. This work opens up an exciting new avenue for the rational design of high-efficiency MXene-based nanocomposites for artificial N 2 fixation. A series of single atom supported on Ti 2 CO 2 and Mo 2 CO 2 MXenes were systematically explored as efficient electrocatalysts for electro-catalytic N 2 reduction. We demonstrate that Ru and Mo atoms anchored MXenes are highly activity.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta09776g</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9633-6702</orcidid><orcidid>https://orcid.org/0000-0002-5124-1934</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (48), p.2762-27631
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_c9ta09776g
source Royal Society Of Chemistry Journals 2008-
subjects Ammonia
Catalysts
Chemical reduction
Constraining
Electrocatalysts
Electrochemistry
First principles
Free energy
Gibbs free energy
Mathematical analysis
MXenes
Nanocomposites
Nitrogen fixation
Nitrogenation
Protonation
Reaction mechanisms
Selectivity
title Single atom-supported MXene: how single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A58%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20atom-supported%20MXene:%20how%20single-atomic-site%20catalysts%20tune%20the%20high%20activity%20and%20selectivity%20of%20electrochemical%20nitrogen%20fixation&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Huang,%20Bin&rft.date=2019&rft.volume=7&rft.issue=48&rft.spage=2762&rft.epage=27631&rft.pages=2762-27631&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta09776g&rft_dat=%3Cproquest_rsc_p%3E2323046914%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2323046914&rft_id=info:pmid/&rfr_iscdi=true