Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium

Magnesium is a remarkable hydrogen storage material due to its ability to reversibly absorb a high dihydrogen amount at affordable cost. However, its practical use is hampered by the high thermodynamic stability of the hydride and slow reaction kinetics. In this work, one-pot synthesis of nanostruct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (4), p.2364-2375
Hauptverfasser: Rizo-Acosta, Pavel, Cuevas, Fermin, Latroche, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2375
container_issue 4
container_start_page 2364
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Rizo-Acosta, Pavel
Cuevas, Fermin
Latroche, Michel
description Magnesium is a remarkable hydrogen storage material due to its ability to reversibly absorb a high dihydrogen amount at affordable cost. However, its practical use is hampered by the high thermodynamic stability of the hydride and slow reaction kinetics. In this work, one-pot synthesis of nanostructured magnesium hydride with addition of 5 mol% of Early Transition Metals (ETM = Sc, Y, Ti, Zr, V, and Nb) as hydrogenation catalysts is accomplished by mechanochemistry under hydrogen gas. Structural and hydrogenation properties have been systematically analyzed to gain a deep understanding of the influence of ETMs on the hydrogenation properties of magnesium. The as-synthesized materials are nanocomposites of MgH 2 and ETM hydrides (ScH 2 , YH 3 , TiH 2 , ZrH 2 , VH and NbH) with a crystallite size of 10 nm. All nanocomposites, but MgH 2 YH 3 , have high reversible hydrogen storage (5 wt%) at 573 K thanks to catalytic effects induced by ETM hydrides leading to fast sorption kinetics. We here demonstrate that, on desorption, ETM hydrides can catalyze the recombination of hydrogen atoms. On absorption, formation of coherent interfaces between ETM hydrides and MgH 2 favors nucleation of the latter. Moreover, for the peculiar case of TiH 2 , lattice mismatch between Mg and TiH 2 hydride limits Mg grain growth, which preserves the fast absorption kinetics of the MgH 2 TiH 2 nanocomposite on cycling. Thus, the best H-cycling properties are found for the MgH 2 TiH 2 nanocomposite with a reversible capacity of 4.8 wt% after 20 H-cycles and the reaction time arbitrarily limited to 15 min. Different contributions to the gravimetric capacity of MgH 2 ETMH x nanocomposites are presented. TiH 2 is the best catalyst for reversible Mg hydrogenation.
doi_str_mv 10.1039/c9ta05440e
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9ta05440e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305487108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-c868990163d0786adede7cc46c6f2def545bab44279d5d44514abfa9cf94a3b73</originalsourceid><addsrcrecordid>eNpFkU1LxDAQhosoKOrFuxDwpLCatmmbHJdFXWHBi57LNJluI7uJTlJlf4b_2Kwr6xzmiyczYd4su8j5bc5LdadVBF4JwfEgOyl4xSeNUPXhPpfyODsP4Y0nk5zXSp1k3_ONIWswMN8zBFptWCRwwUbrHVtjhFVgEJiGlG1CTIUzbElgXfL-Kw7MusF2NnoKrPfE0A3gNBpG-IkUbLdCNqQlfomOhYTBEtMb5sD5EGnUcaREr2HpMNhxfZYd9Wkpnv_F0-z14f5lNp8snh-fZtPFRItKxImWtVSK53VpeCNrMGiw0VrUuu4Lg30lqg46IYpGmcoIUeUCuh6U7pWAsmvK0-x6N3eAVftOdg20aT3Ydj5dtNseL8q8abj8zBN7tWPfyX-MGGL75kdy6XttUaaTyybnMlE3O0qTD4Gw34_NebtVqJ2pl-mvQvcJvtzBFPSe-1ew_AE1mZCe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305487108</pqid></control><display><type>article</type><title>Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Rizo-Acosta, Pavel ; Cuevas, Fermin ; Latroche, Michel</creator><creatorcontrib>Rizo-Acosta, Pavel ; Cuevas, Fermin ; Latroche, Michel</creatorcontrib><description>Magnesium is a remarkable hydrogen storage material due to its ability to reversibly absorb a high dihydrogen amount at affordable cost. However, its practical use is hampered by the high thermodynamic stability of the hydride and slow reaction kinetics. In this work, one-pot synthesis of nanostructured magnesium hydride with addition of 5 mol% of Early Transition Metals (ETM = Sc, Y, Ti, Zr, V, and Nb) as hydrogenation catalysts is accomplished by mechanochemistry under hydrogen gas. Structural and hydrogenation properties have been systematically analyzed to gain a deep understanding of the influence of ETMs on the hydrogenation properties of magnesium. The as-synthesized materials are nanocomposites of MgH 2 and ETM hydrides (ScH 2 , YH 3 , TiH 2 , ZrH 2 , VH and NbH) with a crystallite size of 10 nm. All nanocomposites, but MgH 2 YH 3 , have high reversible hydrogen storage (5 wt%) at 573 K thanks to catalytic effects induced by ETM hydrides leading to fast sorption kinetics. We here demonstrate that, on desorption, ETM hydrides can catalyze the recombination of hydrogen atoms. On absorption, formation of coherent interfaces between ETM hydrides and MgH 2 favors nucleation of the latter. Moreover, for the peculiar case of TiH 2 , lattice mismatch between Mg and TiH 2 hydride limits Mg grain growth, which preserves the fast absorption kinetics of the MgH 2 TiH 2 nanocomposite on cycling. Thus, the best H-cycling properties are found for the MgH 2 TiH 2 nanocomposite with a reversible capacity of 4.8 wt% after 20 H-cycles and the reaction time arbitrarily limited to 15 min. Different contributions to the gravimetric capacity of MgH 2 ETMH x nanocomposites are presented. TiH 2 is the best catalyst for reversible Mg hydrogenation.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta05440e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption ; Catalysts ; Chemical Sciences ; Crystallites ; Crystals ; Cycles ; Grain growth ; Hydrogen ; Hydrogen atoms ; Hydrogen storage materials ; Hydrogenation ; Interfaces ; Kinetics ; Magnesium ; Material chemistry ; Metal hydrides ; Metals ; Nanocomposites ; Nanostructure ; Nucleation ; Properties (attributes) ; Reaction kinetics ; Reaction time ; Recombination ; Storage ; Titanium compounds ; Transition metals ; Yttrium ; Zirconium hydrides</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (4), p.2364-2375</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-c868990163d0786adede7cc46c6f2def545bab44279d5d44514abfa9cf94a3b73</citedby><cites>FETCH-LOGICAL-c454t-c868990163d0786adede7cc46c6f2def545bab44279d5d44514abfa9cf94a3b73</cites><orcidid>0000-0002-9055-5880 ; 0000-0002-8677-8280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02317708$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rizo-Acosta, Pavel</creatorcontrib><creatorcontrib>Cuevas, Fermin</creatorcontrib><creatorcontrib>Latroche, Michel</creatorcontrib><title>Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Magnesium is a remarkable hydrogen storage material due to its ability to reversibly absorb a high dihydrogen amount at affordable cost. However, its practical use is hampered by the high thermodynamic stability of the hydride and slow reaction kinetics. In this work, one-pot synthesis of nanostructured magnesium hydride with addition of 5 mol% of Early Transition Metals (ETM = Sc, Y, Ti, Zr, V, and Nb) as hydrogenation catalysts is accomplished by mechanochemistry under hydrogen gas. Structural and hydrogenation properties have been systematically analyzed to gain a deep understanding of the influence of ETMs on the hydrogenation properties of magnesium. The as-synthesized materials are nanocomposites of MgH 2 and ETM hydrides (ScH 2 , YH 3 , TiH 2 , ZrH 2 , VH and NbH) with a crystallite size of 10 nm. All nanocomposites, but MgH 2 YH 3 , have high reversible hydrogen storage (5 wt%) at 573 K thanks to catalytic effects induced by ETM hydrides leading to fast sorption kinetics. We here demonstrate that, on desorption, ETM hydrides can catalyze the recombination of hydrogen atoms. On absorption, formation of coherent interfaces between ETM hydrides and MgH 2 favors nucleation of the latter. Moreover, for the peculiar case of TiH 2 , lattice mismatch between Mg and TiH 2 hydride limits Mg grain growth, which preserves the fast absorption kinetics of the MgH 2 TiH 2 nanocomposite on cycling. Thus, the best H-cycling properties are found for the MgH 2 TiH 2 nanocomposite with a reversible capacity of 4.8 wt% after 20 H-cycles and the reaction time arbitrarily limited to 15 min. Different contributions to the gravimetric capacity of MgH 2 ETMH x nanocomposites are presented. TiH 2 is the best catalyst for reversible Mg hydrogenation.</description><subject>Absorption</subject><subject>Catalysts</subject><subject>Chemical Sciences</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Cycles</subject><subject>Grain growth</subject><subject>Hydrogen</subject><subject>Hydrogen atoms</subject><subject>Hydrogen storage materials</subject><subject>Hydrogenation</subject><subject>Interfaces</subject><subject>Kinetics</subject><subject>Magnesium</subject><subject>Material chemistry</subject><subject>Metal hydrides</subject><subject>Metals</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Nucleation</subject><subject>Properties (attributes)</subject><subject>Reaction kinetics</subject><subject>Reaction time</subject><subject>Recombination</subject><subject>Storage</subject><subject>Titanium compounds</subject><subject>Transition metals</subject><subject>Yttrium</subject><subject>Zirconium hydrides</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkU1LxDAQhosoKOrFuxDwpLCatmmbHJdFXWHBi57LNJluI7uJTlJlf4b_2Kwr6xzmiyczYd4su8j5bc5LdadVBF4JwfEgOyl4xSeNUPXhPpfyODsP4Y0nk5zXSp1k3_ONIWswMN8zBFptWCRwwUbrHVtjhFVgEJiGlG1CTIUzbElgXfL-Kw7MusF2NnoKrPfE0A3gNBpG-IkUbLdCNqQlfomOhYTBEtMb5sD5EGnUcaREr2HpMNhxfZYd9Wkpnv_F0-z14f5lNp8snh-fZtPFRItKxImWtVSK53VpeCNrMGiw0VrUuu4Lg30lqg46IYpGmcoIUeUCuh6U7pWAsmvK0-x6N3eAVftOdg20aT3Ydj5dtNseL8q8abj8zBN7tWPfyX-MGGL75kdy6XttUaaTyybnMlE3O0qTD4Gw34_NebtVqJ2pl-mvQvcJvtzBFPSe-1ew_AE1mZCe</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Rizo-Acosta, Pavel</creator><creator>Cuevas, Fermin</creator><creator>Latroche, Michel</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9055-5880</orcidid><orcidid>https://orcid.org/0000-0002-8677-8280</orcidid></search><sort><creationdate>2019</creationdate><title>Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium</title><author>Rizo-Acosta, Pavel ; Cuevas, Fermin ; Latroche, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-c868990163d0786adede7cc46c6f2def545bab44279d5d44514abfa9cf94a3b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Catalysts</topic><topic>Chemical Sciences</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Cycles</topic><topic>Grain growth</topic><topic>Hydrogen</topic><topic>Hydrogen atoms</topic><topic>Hydrogen storage materials</topic><topic>Hydrogenation</topic><topic>Interfaces</topic><topic>Kinetics</topic><topic>Magnesium</topic><topic>Material chemistry</topic><topic>Metal hydrides</topic><topic>Metals</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Nucleation</topic><topic>Properties (attributes)</topic><topic>Reaction kinetics</topic><topic>Reaction time</topic><topic>Recombination</topic><topic>Storage</topic><topic>Titanium compounds</topic><topic>Transition metals</topic><topic>Yttrium</topic><topic>Zirconium hydrides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rizo-Acosta, Pavel</creatorcontrib><creatorcontrib>Cuevas, Fermin</creatorcontrib><creatorcontrib>Latroche, Michel</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizo-Acosta, Pavel</au><au>Cuevas, Fermin</au><au>Latroche, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>4</issue><spage>2364</spage><epage>2375</epage><pages>2364-2375</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Magnesium is a remarkable hydrogen storage material due to its ability to reversibly absorb a high dihydrogen amount at affordable cost. However, its practical use is hampered by the high thermodynamic stability of the hydride and slow reaction kinetics. In this work, one-pot synthesis of nanostructured magnesium hydride with addition of 5 mol% of Early Transition Metals (ETM = Sc, Y, Ti, Zr, V, and Nb) as hydrogenation catalysts is accomplished by mechanochemistry under hydrogen gas. Structural and hydrogenation properties have been systematically analyzed to gain a deep understanding of the influence of ETMs on the hydrogenation properties of magnesium. The as-synthesized materials are nanocomposites of MgH 2 and ETM hydrides (ScH 2 , YH 3 , TiH 2 , ZrH 2 , VH and NbH) with a crystallite size of 10 nm. All nanocomposites, but MgH 2 YH 3 , have high reversible hydrogen storage (5 wt%) at 573 K thanks to catalytic effects induced by ETM hydrides leading to fast sorption kinetics. We here demonstrate that, on desorption, ETM hydrides can catalyze the recombination of hydrogen atoms. On absorption, formation of coherent interfaces between ETM hydrides and MgH 2 favors nucleation of the latter. Moreover, for the peculiar case of TiH 2 , lattice mismatch between Mg and TiH 2 hydride limits Mg grain growth, which preserves the fast absorption kinetics of the MgH 2 TiH 2 nanocomposite on cycling. Thus, the best H-cycling properties are found for the MgH 2 TiH 2 nanocomposite with a reversible capacity of 4.8 wt% after 20 H-cycles and the reaction time arbitrarily limited to 15 min. Different contributions to the gravimetric capacity of MgH 2 ETMH x nanocomposites are presented. TiH 2 is the best catalyst for reversible Mg hydrogenation.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta05440e</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9055-5880</orcidid><orcidid>https://orcid.org/0000-0002-8677-8280</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (4), p.2364-2375
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_c9ta05440e
source Royal Society Of Chemistry Journals 2008-
subjects Absorption
Catalysts
Chemical Sciences
Crystallites
Crystals
Cycles
Grain growth
Hydrogen
Hydrogen atoms
Hydrogen storage materials
Hydrogenation
Interfaces
Kinetics
Magnesium
Material chemistry
Metal hydrides
Metals
Nanocomposites
Nanostructure
Nucleation
Properties (attributes)
Reaction kinetics
Reaction time
Recombination
Storage
Titanium compounds
Transition metals
Yttrium
Zirconium hydrides
title Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrides%20of%20early%20transition%20metals%20as%20catalysts%20and%20grain%20growth%20inhibitors%20for%20enhanced%20reversible%20hydrogen%20storage%20in%20nanostructured%20magnesium&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Rizo-Acosta,%20Pavel&rft.date=2019&rft.volume=7&rft.issue=4&rft.spage=2364&rft.epage=2375&rft.pages=2364-2375&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta05440e&rft_dat=%3Cproquest_rsc_p%3E2305487108%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305487108&rft_id=info:pmid/&rfr_iscdi=true